TFAWS Active Thermal Paper Session

Next Generation of High-Heat-Flux Heat Pipes for Space Thermal Control Applications

Mohammed T. Ababneh – Advanced Cooling Technologies, Inc. Calin Tarau – Advanced Cooling Technologies, Inc. William G. Anderson – Advanced Cooling Technologies, Inc. Jesse W. Fisher – Lockheed Martin Coherent Technologies

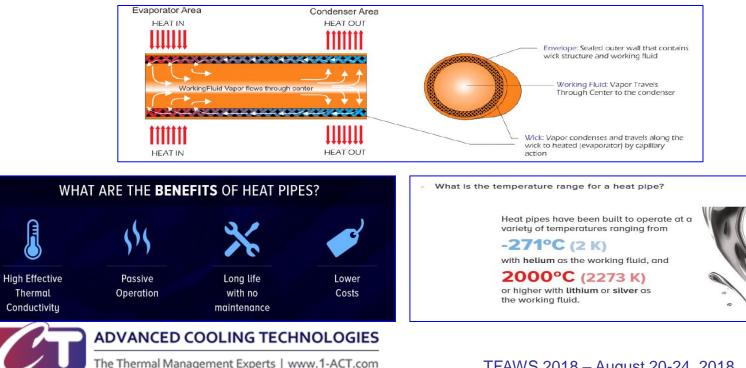
Presented By Dr. Mohammed T. Ababneh

Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX

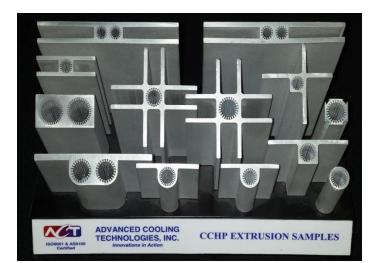
- Motivation
- Background
- Hybrid Wick Heat Pipe Concept
- High-Heat-Flux CCHPs
- Conclusion
- Acknowledgment

Motivation

- The electronic design community is facing a new level of thermal challenges for the next-generation electronic systems.
 - It is typical to have localized high heat flux components located within the system in direct contact to other components, which are sensitive to high temperature.
- Examples of applications demanding high heat flux cooling solutions:
 - > Medical
 - Automotive
 - Computer
 - > LED
 - Military
 - ➢ <u>Space</u>



- Passive two-phase heat transfer device operating in a closed system
- Working fluid vaporizes utilizing the latent heat of vaporization
- Vapor flows to cooler end due to the slight pressure difference
- Vapor condenses and returns to evaporator by gravity or capillary force
- Typically a 2-5°C Δ T across the length of the pipe


TFAWS 2018 – August 20-24, 2018

Background – Axial Grooved CCHPs

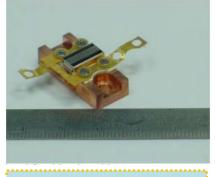
Standard for spacecraft HPs

- > Very high permeability.
- > Allows for very long heat pipes (up to \approx 3.5 m).
- Only suitable for zero-g/ gravity-aided operation
 - > Low capillary pumping capability.
 - > 0.1" against earth gravity.
- Drawbacks:
 - > Low heat flux limitation in the evaporator
 - No pumping capability against gravity on planetary surfaces

ACT's solution – Hybrid wick CCHP

ACT'S CCHP SPACE FLIGHT HOURS: 25,911,190.6

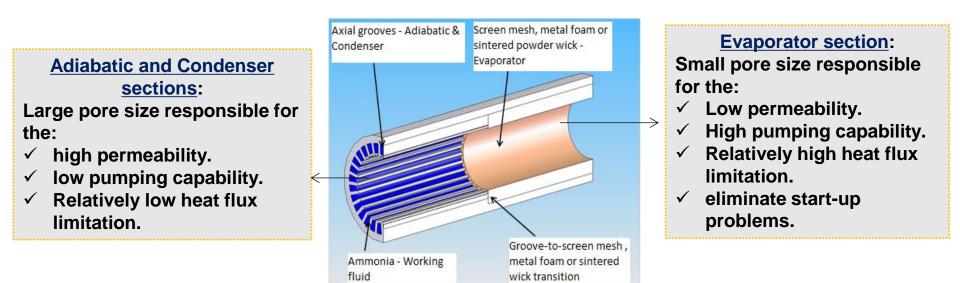
NAS/



- Can involve high power electronics with heat fluxes approach ~ 50 W/cm².
- High heat flux limitation for future high power electronics such as laser diodes.
- High heat flux (~ 50 W/cm²) is a severe limitation for:
 - > Standard grooved CCHPs.
 - Loop heat pipes (LHPs).
- ACT is developing a novel hybrid wick CCHP for:
 - Lunar and Martian landers and rovers.
 - Solving the high heat flux limitation for future highly integrated electronics.

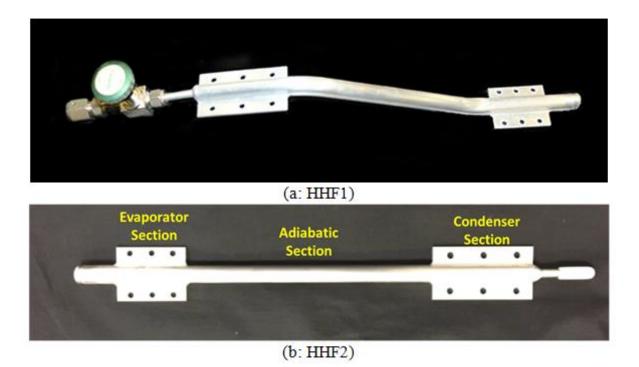
NAS

High power laser diode arrays (LDAs)

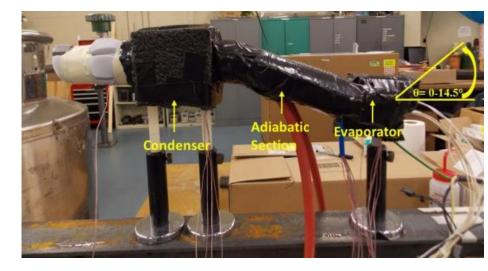


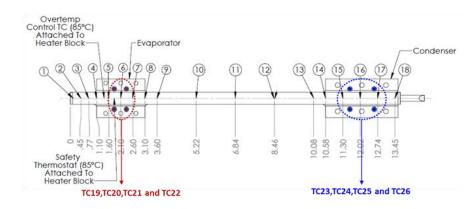
TFAWS 2018 - August 20-24, 2018

- Heat pipe with a hybrid wick that contains screen mesh, metal foam or sintered evaporator wicks for the evaporator region.
 - Can sustain high heat fluxes.
- The axial grooves in the adiabatic and condenser sections
 - Can transfer large amounts of power over long distances due to their high wick permeability and associated low liquid pressure drop.



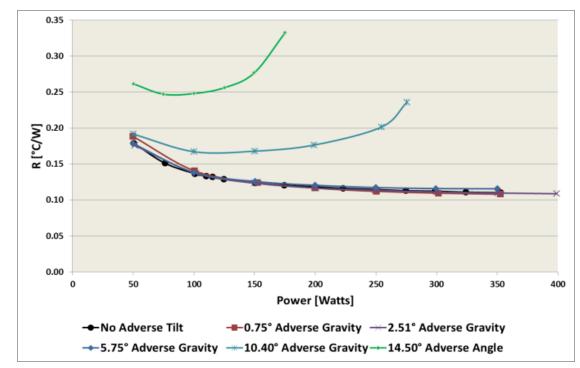
- Two aluminum/ammonia hybrid high-heat-flux (HHF) heat pipes were designed and fabricated
- These heat pipes (bended (HHF1) and straight (HHF2)) represent the high heat flux design with sintered powder metal in the evaporator and axial grooves in the condenser and adiabatic sections.



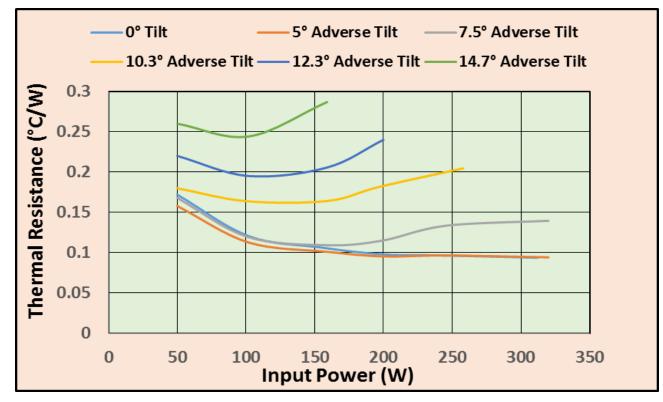


Hybrid (HHF1) Heat Pipes Testing

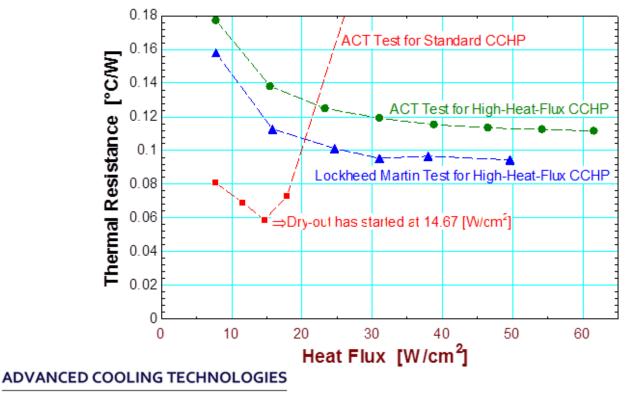
- Testing was performed between 0° - 14.5° adverse elevation between the evaporator and the condenser, with the evaporator above the condenser.
- An aluminum heater block with 2 (200 W) cartridge heaters is used as the heat input source.
- The condenser sink condition was established using an aluminum block connected with a Liquid Nitrogen (LN) source.
- The pipe was instrumented with type T thermocouples



NA SA


- The HHF1 pipe transported a heat load of ~ 350 W up to 8.2° adverse elevation respectively before complete dry-out.
- The thermal resistance as a function of power for the bended hybrid HHF1 heat pipe in horizontal positions (between 0.1° to 14.5° adverse elevation) is shown below:

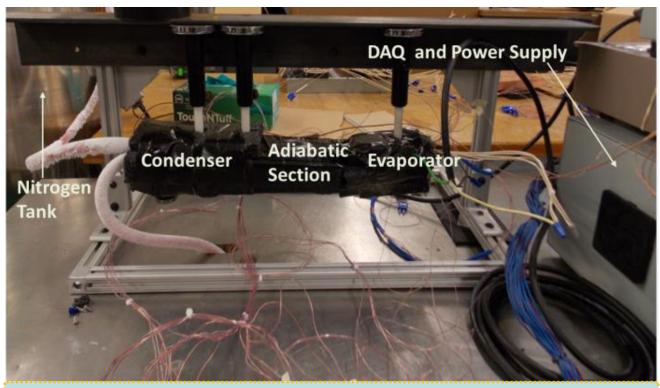
- The bended high-heat-flux (HHF1) hybrid heat pipe was shipped to Lockheed Martin Coherent Technologies, Inc. for validating the testing results.
- The testing results from Lockheed Martin is shown below:


ADVANCED COOLING TECHNOLOGIES

The Thermal Management Experts | www.1-ACT.com

NASA

- The high-heat-flux (HHF1) aluminum/ammonia CCHP transported a heat load of > 310 Watts with heat flux input of > 48 - 62 W/cm² and thermal resistance < 0.12 °C/W.</p>
- This demonstrates an improvement in heat flux capability of more than 3 times over the standard axial groove aluminumammonia CCHP design.


NASA

The Thermal Management Experts | www.1-ACT.com

TFAWS 2018 – August 20-24, 2018

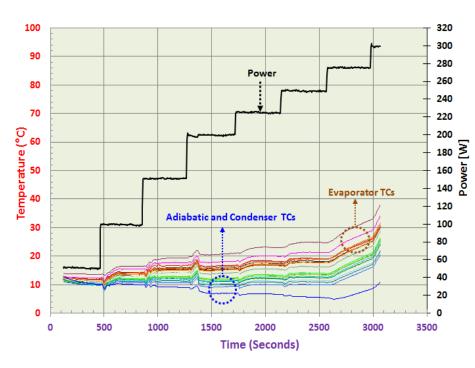
The hybrid HHF2 heat pipe was tested in horizontal noninverted "standard orientation" positions (between 0.1" to 0.3" adverse elevation)

The second hybrid aluminum-nickel-ammonia high heat flux CCHP under performance test

TFAWS 2018 – August 20-24, 2018

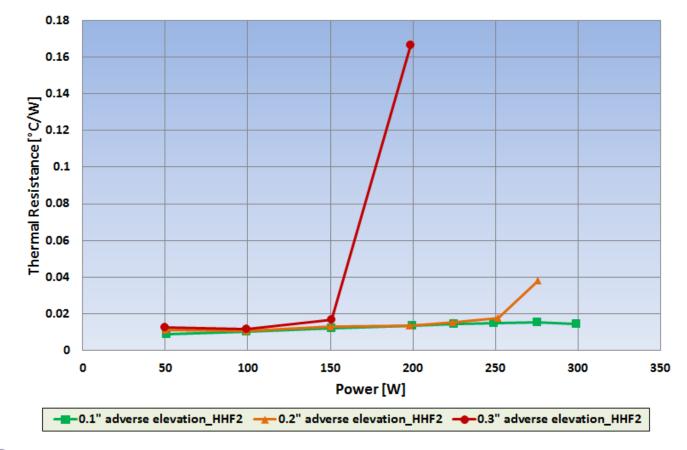
NASA




- Successfully inserted a sintered nickel wick into a 0.5" OD aluminum extrusion
- Successfully tested the high heat flux (HHF) hybrid CCHPs
- The hybrid wick high heat flux aluminum/ammonia CCHP transported a heat load of 275 Watts with heat flux input of 54 W/cm² and R=0.015 °C/W at 0.1 inch adverse elevation.
- This demonstrates an improvement in heat flux capability of <u>more than 3 times</u> over the standard axial groove CCHP design.
- The hybrid CCHP exceeds the 30 years life time (i.e. exceeds the 345 days operation at 75° C)

ADVANCED COOLING TECHNOLOGIES

The Thermal Management Experts | www.1-ACT.com



TFAWS 2018 – August 20-24, 2018

NASA

 The thermal resistance as a function of power for the second hybrid heat pipe in horizontal positions (between 0.1" to 0.3" adverse elevation) is shown below:

ADVANCED COOLING TECHNOLOGIES

The Thermal Management Experts | www.1-ACT.com

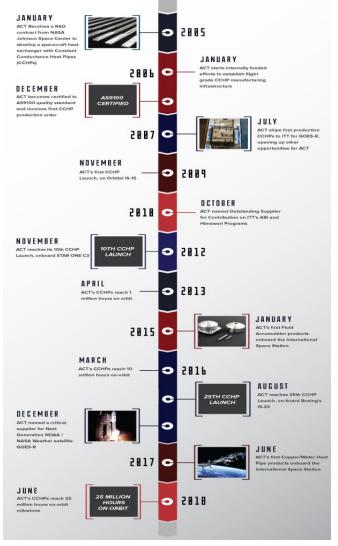
Conclusion

- ACT develops new generation of high-heat-flux CCHPs based on hybrid wick technology.
- The 5 15 W/cm² heat density limitation of aluminum-ammonia grooved heat pipes has been a fundamental limitation in the current design for space applications.
- Two high-heat-flux hybrid CCHPs were developed and tested.
- The first bended hybrid CCHP (HHF1) transported a heat load of > 310 Watts with heat flux input of > 48 – 62 W/cm² and thermal resistance < 0.12 °C/W and the results were validated by Lockheed Martin.

- The second hybrid CCHP (HHF2) transported a heat load of 275 Watts with heat flux input of 54 W/cm² and with a thermal resistance of 0.015 °C/W at 0.1 inch adverse elevation.
- This demonstrates an improvement in heat flux capability of more than 3 times over the standard axial groove aluminum-ammonia CCHP design.
- The results show that the heat pipe performs efficiently, consistently and reliably and can adapt to many high heat flux applications.

- The hybrid aluminum-ammonia CCHPs work was sponsored by NASA Marshall Space Flight Center under Contract No. NNX15CM03C.
- Dr. Jeffery Farmer is the contract technical monitor.
- Joel Wells, Chris Jarmoski, and Corey Wagner from ACT were the laboratory technicians responsible for the fabrication and testing of the heat pipes.

NA S



ADVANCED COOLING TECHNOLOGIES

The Thermal Management Experts | www.1-ACT.com

SPACE FLIGHT HERITAGE TIMELINE

Questions?

Thank you for your attention!

TFAWS 2018 - August 20-24, 2018