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Introduction 
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q  Nucleate boiling – liquid-vapor phase change 

o  One of the most efficient modes of heat transfer 

ü  Transfers enormous amount of heat with small driving 
temperature difference  

o  Widely applied in energy conversion, power generation 
and thermal management 

o  Current limitations 
ü  Low boiling heat transfer coefficient (BHTC) 
ü  Highest critical heat flux (CHF) is only around 10% of 

theoretical maximum 
ü  An increase in CHF by 30% alone will increase the power 

density of pressurized water reactors by 20% 



Boiling 101 
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Fig. 1 A typical boiling curve.
Wall superheat ΔTsat = (Tw -Tsat)
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q Goals for boiling heat transfer enhancement 
o  Onset of nucleate boiling (ONB) at low wall superheat 
o  Steeper boiling curve – high HTC 
o  Extremely high CHF  
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Fig. 1 Boiling curves: (a) a typical boiling curve; and (b) an ideal boiling
curve.
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Effects of Surface Wettability 
q  Surface wettability plays a critical role in nucleate boiling  

o  Hydrophobic surfaces have lower energy barrier for 
nucleation and promotes ONB 

o  High HTC depends on: nucleation site density, bubble 
departure size/frequency, and contact line motion, etc. 

o  Higher CHF can be obtained if the surface remains wetted 
by liquid and the vapor phase boundary is restricted 

 
q  A dilemma: On one hand, hydrophobicity promotes 

ONB; on the other hand, hydrophilicity enhances 
CHF 
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Effects of Surface Wettability 

Better boiling heat transfer! 

CHF ONB 
ONB 

CHF 

Jo H. et al. 2011. IJHMT. ‘ A study of nucleate boiling on hydrophilic, hydrophobic and heterogeneous wetting surfaces  
 

How can we harness the benefits of 

both hydrophobicity and 

hydrophilicity?   



Current Enhancement Technology 
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q  Surfaces with hybrid wettability 

 
q  Surfaces with hierarchical micro/nanoscale structures 
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Hybrid surface 

Current Enhancement Technology 

q  It is working! 
q  But … 

o  Complicated to fabricate 
o  Multiple parameters 

affecting boiling process 
o  Difficult  to optimize 
o  Wettability 

distribution fixed 
once fabricated 

 

 

Can we actively control the 

spatiotemporally dynamic boiling 

process?   
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q  Electrowetting (EW): Modification of surface wettability with an 
applied electric field, also termed “electrowetting on 
dielectric” (EWOD) 

q  EW is represented by the change of contact angle θ  

o  Hydrophilic surface: θ < 90° 

o  Hydrophobic surface: θ > 90°  (Superhydrophobic: θ > 120°) 

 

Electrowetting 

Electrode 
Dielectric layer 
Teflon layer 

Silicon substrate 

EW of water droplet on Teflon-coated surface 
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Electrowetting Theory 

  
cosθa = cosθ0 +

ε0εd

2dσ LV

V 2
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Contact angle  
saturation 

Water on Teflon 
θ0 = 120° 
d = 1 µm  d = 500 nm 

θ0: inherent contact angle;  

 θa: apparent contact angle 

ε0: permittivity in vacuum;  

εd: relative permittivity 

d: dielectric layer thickness;   

V: applied voltage 

σLV: liquid surface tension 

where 

q  EW theory was first developed by Gabriel Lippmann in 1875, known 
as the Young-Lippmann equation 



q  DC electrowetting 

 
 
 

q  AC electrowetting 
 
 

 

Electrowetting - Droplets 
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P2 mode (V =  32 V, f = 28 Hz) 

P4 mode (V = 32 V, f = 79 Hz) 

Visualization Simulation 



Electrowetting - Bubbles 
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Zhao Y. and Cho S.K., 2006, Lab Chip, “Micro air bubble 
manipulation by electrowetting on dielectric” 

q  Contact angle variation is significant enough to reverse the 
surface wettability 

q  Under AC EW, interfacial oscillation generates strong streaming 
flow around the bubble 

Ko et al., 2009, App Phy Lett, “A synthetic jet produced by 
electrowetting-driven bubble oscillation in aqueous solutions” 

It is possible to modulate/enhance 

nucleate boiling with EW! 
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Experimental Setup 
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Test Device 
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n  Coating material: DuPont™ Teflon® 
(AF1600) dissolved in FC40 (2%) 

n  Adhesion promoter: Fluorosyl™ FCL-52 
in fluorosolvent FSM660-4 (0.4%) 

n  Fabrication method 
o  Dip coat Fluorosyl solution  

o  Spin coat Teflon  

!

!
!

!



Measurement Parameters 
q Optical imaging 

o  Nucleate bubble dynamics 
o  Boiling regime identification 

q  IR thermography 
o  Boiling surface wall temperature 
o  Heat flux 

q Data acquisition 
o  Power supply to heater  
o  Liquid pool temperature 
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Synchronous 



Wall Temperature and Heat Flux 
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IR Image 

Wall temperature  Heat flux 



Electrowetting Signals 
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Onset of Nucleate Boiling 
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Hydrophobic Surface 
q” = 3.7 kW/m2 

EW modulated  
(Vr.m.s = 78 V, f = 10 Hz)  

q” = 6.8 kW/m2 



Onset of Nucleate Boiling 
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q Change in bubble geometry 
o  Absence of vapor patch upon departure 

q Delayed ONB 
o  Hydrophobic surface = 3.7 kW/m2 

o  EW modulated = 6.8 kW/m2 

q Shorter bubble departure time 
o  Hydrophobic surface = 1.5 sec 
o  EW modulated = 430.25 ms 

q Decreased bubble footprint size 
o  Hydrophobic surface, radius = 3 mm 
o  EW modulated, radius = 2.75 mm 

q Reduced contact angle 
o  Hydrophobic surface ~ 104 – 118 ° 
o  EW modulated ~ 80 ° 

Hydrophobic surface 

EW modulation 
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Fully-Developed Nucleate Boiling 
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Hydrophobic surface 
q” = 62.6 kW/m2 

EW modulated 
q” = 62.6 kW/m2 



Fully-Developed Nucleate Boiling 
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q  Effect of AC EW 

o  Decrease in average wall temperature by 1.5ºC 

o  Increase in boiling heat flux by 10 kW/m2 



Film Boiling to Nucleate Boiling Transition 
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Applied heat flux = 82 kW/m2 

EW waveform applied 



Wall Temperature Variation 
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CHF Enhancement 
q  Wall heat flux = 86.9 kW/m2  

q  EW effect on boiling regime 
o  Absence of vapor film 
o  Surface exposed to bulk fluid 
o  Delayed onset of film boiling 
o  Higher departure frequency 
o  Smaller departure size 

q  EW effect on wall temperature 
o  Lower wall temperature 

o  Hydrophobic surface > 200 °C 
o  EW modulated ~ 110 °C 

o  Enhanced HTC 
o  Enhanced wall heat flux 
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Hydrophobic surface 

EW modulation 



EW-Enhanced Boiling Heat Transfer 

Boiling curve Boiling heat transfer coefficient 

q  Delayed onset of film boiling 
q  CHF is enhanced under the influence of EW 
q  Overall enhancement of boiling HTC 
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Enhancement Mechanisms 

q  Nucleate boiling regime 
o  Altering the bubble dynamics 
o  Enhancing microcovection in the liquid 
o  Re-creating the microlayer 
o  Augmenting the quenching heat transfer 

q  Filmwise transition boiling 
o  Destabilizing the liquid-vapor interface   

29 



Conclusions 
q  We have demonstrated that the bubble dynamics can be 

effectively controlled by EW and nucleate boiling heat 
transfer can be favorably improved over the entire range 
of boiling regimes. 

q  We have developed experiments and are developing 
theoretical/numerical models to understand the physical 
mechanisms of EW-enhancement of nucleate boiling. 
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