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Overview of Squeeze-Films

Squeeze-film flows 

• Relative normal motion of surfaces separated by a thin film of 

viscous fluid

• Surfaces trying to squeeze fluid out of the interface (and vice versa)

• Induced hydrodynamic pressure tends to oppose motion of surfaces
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Overview of Squeeze-Films

Squeeze-film dampers (SFDs)

• Squeeze effect often used in mechanical vibration dampers

• Common applications:

– High-performance turbojet and turboshaft engines 

– Microelectromechanical systems (MEMS)

– Nature (e.g. synovial joints)

TFAWS 2018 – August 20-24, 2018

3

Schematic of SFD in turbojet aircraft engineSchematic of a squeeze-film in the knee



Performance and Modelling Challenges
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Damping via viscous dissipation

• Viscosity of the fluid is crucial for effectiveness

• Problem: viscosity typically diminishes with increased temperature

• Potential solution: leverage magnetohydrodynamic forces

Small length scales 

• Classical lubrication theory assumes negligible inertia

• High-frequency motion/decreased viscosity brings this assumption 

into question

• Small length scale of flow amplifies effect of surface roughness

• How does roughness structure of the surfaces affect the flow?



Outline
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Part I: quasi-steady analysis

1. Develop a general governing equation for MHD squeeze-films

2. Introduce fractals for modeling real surface topography

3. Apply the FEM to solve the flow problem 

4. Conduct quasi-steady numerical studies

Part II: transient analysis 

1. Incorporate MHD squeeze-film model into a nonlinear mass-spring-

damper model

2. Apply implicit time-integration to solve nonlinear equation of motion

3. Conduct time-domain numerical studies to evaluate MHD damper 

performance



Outline
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Governing Flow Equations
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Classical Reynolds equation 

• Famously derived by O. Reynolds in 1886

• Reduction of the Navier-Stokes equations based on arguments of 

scale

• Assumptions:

–

– Newtonian fluid and incompressible flow

– Gravity negligible

– Pressure invariant over depth (i.e. the thin-film assumption)

• Poisson-type PDE for pressure:

Note: This is a ‘squeeze’ variant of Reynolds’ original derivation



Governing Flow Equations
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Magnetohydrodynamics (MHD)

• Interaction between conducting fluids and magnetic fields

• Based on the Lorentz force

• Appears as a body force in the Navier-Stokes equations

• Couples the fluid dynamics and electrodynamics 

where: 

pre-Maxwell equations Navier-Stokes equations

Couple



Governing Flow Equations
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Magnetic Damping

• Lorentz force a result of 

magnetic stress

• Magnetic field lines deformed 

by flow

• “Tension” in the field line acts 

opposite of the flow

Augmenting role of viscosity in 

SFDs

• Assume the fluid is an 

electrical conductor

• Apply vertical magnetic field 

across film



Governing Flow Equations

Derivation of the MHD Reynolds equation with temporal inertia

1. Point-of-departure

2. Perform dimensional analysis
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MHD Equations



Governing Flow Equations

Derivation of the MHD Reynolds equation with temporal inertia

3. Impose assumptions

i. Newtonian fluid and incompressible flow

ii. Flow domain is a thin film (i.e.            )

iii. Magnetic field is quasi-steady (i.e.                 )

iv. Temporal inertia dominates convective inertia (i.e.                               ) 
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Thin-film MHD Equations



Governing Flow Equations

Derivation of the MHD Reynolds equation with temporal inertia

4. Integrate continuity equation over film thickness

where:

5. Use the momentum equations to evaluate above integral 
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Generalized MHD Reynolds Equation



Surface Characterization

Surface roughness in the Reynolds equation

• Film thickness depends on the topographies of the bounding surfaces

• Digital representation of real surfaces is not trivial 

• Properties change with resolution of measuring device

• Scale-independent characterization parameters are desired 
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Surface Characterization

Weierstrass-Mandelbrot fractal

• Fractals can be used to generate scale-invariant topographies

• Possess self-similar structure (asperities upon asperities)

• Construction similar to a Fourier series:
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Finite Element Method

Weak form 

• FEM based on the weak formulation

• No longer have to differentiate

• Dirichlet boundary conditions built into the solution space 
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Solution and Test Spaces

Weak form of the MHD Reynolds equation



Finite Element Method

Galerkin FEM

• Solution and test functions projected onto finite element space with 

linear basis functions

• Numerical integration via Gauss quadratures

• Results in the linear system:

where:
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Quasi-steady Results

Problem 1: Smooth surfaces, varying magnetic field strength
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Pressure field solution Pressure solution along a slice



Quasi-steady Results

Problem 2: Rough surfaces, varying fractal dimension 
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Fractal top surface mesh, 80,000 finite elements, D = 2.3 Fractal top surface mesh, 80,000 finite elements, D = 2.8



Quasi-steady Results

Problem 2: Rough surfaces, varying fractal dimension 
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Pressure field solution, D = 2.8Pressure field solution, D = 2.3



Quasi-steady Results

Problem 2: Rough surfaces, varying fractal dimension 
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Velocity field, D = 2.8Velocity field, D = 2.3



Quasi-steady Results

Problem 3: Arbitrary surface geometry/topology
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Velocity fieldFEM Mesh, 10,000 elements



Outline
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Dynamics with Squeeze-film Dampers
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Modeling a SFD on a single DOF oscillator

• Incorporate actual fluid dynamics for the damping in dynamic models

• Modeling the fluid with the MHD Reynolds equation makes the 

model computationally efficient

SFD in turbo-jet aircraft Computational model for MHD SFD analysis



Dynamics with Squeeze-film Dampers
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Nonlinear mass-spring-damper system

• is the nonlinear damping force from the SFD

• Damping force computed from the Reynolds equation solution

where:

• Results in a nonlinear integro-differential equation



Time integration

TFAWS 2018 – August 20-24, 2018 25

Newmark-Beta method with Newton-Raphson iterations

• Choose Newmark parameters corresponding to linear expansion of

• For each time-step    , we solve a nonlinear problem:

where:

• Once converged, update the solution for next time step

Newton-Raphson system in incremental form



Transient Results
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Problem 1: Constant load with temporal inertia effects

Inertia effect, no MHD effect Inertia effect, with MHD effect



Transient Results
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Problem 2: Free vibration with varying magnetic field strength

Free vibration with inertia and MHD effects



Transient Results
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Problem 3: Forced vibration highlighting nonlinearity

Forced vibration with inertia and no MHD effects



Transient Results
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Problem 4: Modal analysis via white-noise excitation

• Excite with a white-noise forcing signal

• Determine the resonant mode by computing the power spectrum of the response

Time series response for Ha = 5 Power spectrum response



Transient Results
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Problem 4: Modal analysis via white-noise excitation

• Repeat the process with varying magnetic field strength

Power spectra of the responses for a range of Hartmann numbers



Conclusions
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Part I – quasi-steady analysis

• Novel derivation of an extension to the Reynolds equation permits modelling 

of MHD effects and temporal inertia (added mass) in SFDs

• MHD forces may augment the role of viscous damping

• Surface roughness can significantly influence the flow

• FEM provides an optimal solution and relaxes regularity requirements of flow 

conductivities

Part II – transient analysis

• Incorporating the SFD force in a dynamic system yields a nonlinear integro-

differential equation

• Problem integrated in time with a Newmark/Newton-Raphson approach

• Damping properties of the system can be controlled with varying magnetic 

field strength



Thank you!
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