TFAWS Active Thermal Paper Session

Increased Control of Squeeze-Film Performance with Magnetohydrodynamics and Surface Roughness: Theory and Modeling

Jordan R. Wagner¹ and C. Fred Higgs III¹

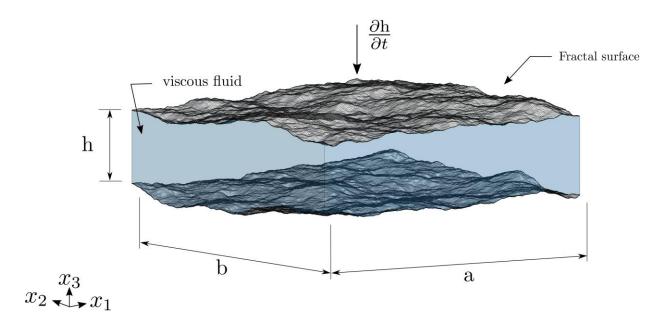
¹Rice University, Department of Mechanical Engineering 6100 Main St, Houston, TX, 77005, USA

> Presented By Jordan R. Wagner

Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX

Squeeze-film flows

- Relative normal motion of surfaces separated by a thin film of viscous fluid
- Surfaces trying to squeeze fluid out of the interface (and vice versa)
- Induced hydrodynamic pressure tends to oppose motion of surfaces

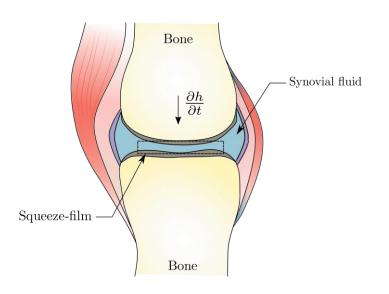


TFAWS 2018 - August 20-24, 2018

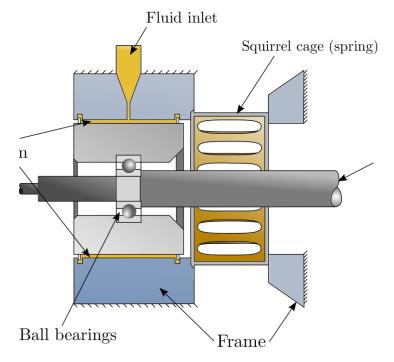
Overview of Squeeze-Films

Squeeze-film dampers (SFDs)

- Squeeze effect often used in mechanical vibration dampers
- Common applications:
 - High-performance turbojet and turboshaft engines
 - Microelectromechanical systems (MEMS)
 - Nature (e.g. synovial joints)



Schematic of a squeeze-film in the knee



Schematic of SFD in turbojet aircraft engine

TFAWS 2018 – August 20-24, 2018

NASA

Damping via viscous dissipation

- Viscosity of the fluid is crucial for effectiveness
- **Problem:** viscosity typically diminishes with increased temperature
- **Potential solution**: leverage magnetohydrodynamic forces

Small length scales

- Classical lubrication theory assumes negligible inertia
- High-frequency motion/decreased viscosity brings this assumption into question
- Small length scale of flow amplifies effect of surface roughness
- How does roughness structure of the surfaces affect the flow?

Outline

Part I: quasi-steady analysis

- 1. Develop a general governing equation for MHD squeeze-films
- 2. Introduce fractals for modeling real surface topography
- 3. Apply the FEM to solve the flow problem
- 4. Conduct quasi-steady numerical studies

Part II: transient analysis

- 1. Incorporate MHD squeeze-film model into a nonlinear mass-springdamper model
- 2. Apply implicit time-integration to solve nonlinear equation of motion
- 3. Conduct time-domain numerical studies to evaluate MHD damper performance

Outline

Part I: quasi-steady analysis

- 1. Develop a general governing equation for MHD squeeze-films
- 2. Introduce fractals for modeling real surface topography
- 3. Apply the FEM to solve the flow problem
- 4. Conduct quasi-steady numerical studies

Part II: transient analysis

- 1. Incorporate MHD squeeze-film model into a nonlinear mass-springdamper model
- 2. Apply implicit time-integration to solve nonlinear equation of motion
- 3. Conduct time-domain numerical studies to evaluate MHD damper performance

Classical Reynolds equation

- Famously derived by O. Reynolds in 1886
- Reduction of the Navier-Stokes equations based on arguments of scale
- Assumptions:
 - $\text{Re} \ll 1$
 - Newtonian fluid and incompressible flow
 - Gravity negligible
 - Pressure invariant over depth (i.e. the thin-film assumption)
- Poisson-type PDE for pressure:

$$abla \cdot \left(\frac{h^3}{12\eta}\nabla p\right) = \frac{\partial h}{\partial t}$$

$$h \equiv \text{film thickness}$$

$$\frac{\partial h}{\partial t} \equiv \text{squeeze velocity}$$

 $\eta \equiv \text{viscosity}$

 $p \equiv hydrodynamic pressure$

Note: This is a 'squeeze' variant of Reynolds' original derivation

TFAWS 2018 - August 20-24, 2018

NASA

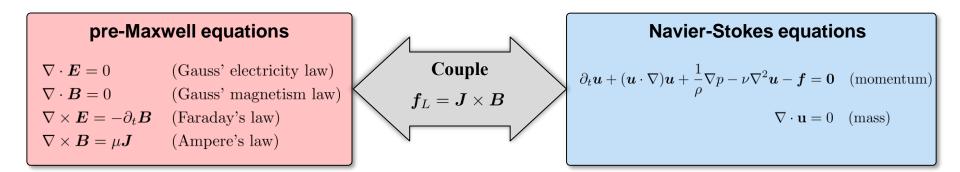
Magnetohydrodynamics (MHD)

- Interaction between conducting fluids and magnetic fields
- Based on the Lorentz force

$$f_L = J \times B$$
 where: $B \equiv$ magnetic field

 $J \equiv \text{current density}$

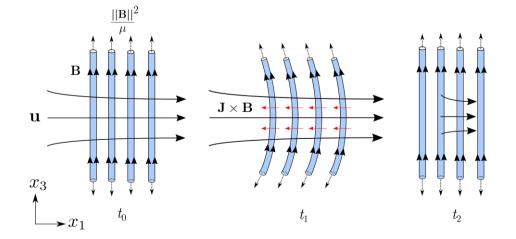
- Appears as a body force in the Navier-Stokes equations
- Couples the fluid dynamics and electrodynamics



Governing Flow Equations

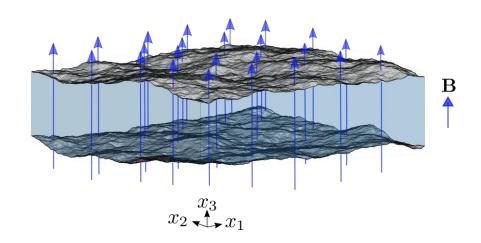
Magnetic Damping

- Lorentz force a result of magnetic stress
- Magnetic field lines deformed by flow
- "Tension" in the field line acts opposite of the flow



Augmenting role of viscosity in SFDs

- Assume the fluid is an electrical conductor
- Apply vertical magnetic field
 across film



Derivation of the MHD Reynolds equation with temporal inertia

1. Point-of-departure

MHD Equations			
$ hoig(\partial_toldsymbol{u}+(oldsymbol{u}\cdot abla)oldsymbol{u}ig)+ abla p-\eta abla^2oldsymbol{u}-oldsymbol{J} imesoldsymbol{B}=oldsymbol{0}$	(momentum)		
$\partial_t \boldsymbol{B} - abla imes (\boldsymbol{u} imes \boldsymbol{B}) - lpha abla^2 \boldsymbol{B} = \boldsymbol{0}$	(induction)		
$ abla \cdot oldsymbol{u} = 0$	(mass)		
$ abla \cdot \boldsymbol{J} = 0$	(charge)		
$oldsymbol{J} - arsigma(oldsymbol{u} imes oldsymbol{B}) = oldsymbol{0}$	(closure: Ohm's law)		

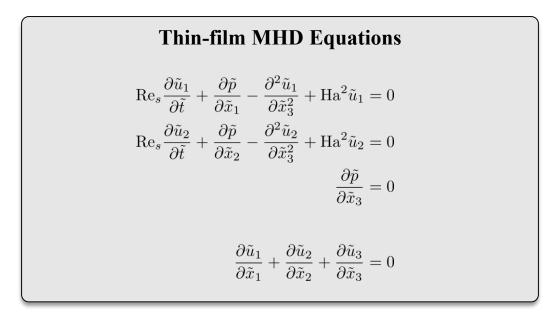
2. Perform dimensional analysis

Parameter	Definition	Description
Aspect ratio	$\varepsilon = \frac{h_0}{L}$	Ratio of film thickness to lateral dimension
Reynolds number	$\operatorname{Re} = \frac{\rho h_0 U}{n}$	Ratio of inertial to viscous forces
Squeeze Reynolds number	$\operatorname{Re}_{s} = \frac{\rho h_{0}^{2} \omega}{n}$	Frequency-based Reynolds number
Magnetic Reynolds number	$\operatorname{Re}_m = \ \boldsymbol{u} \ \mu \varsigma h_0$	Ratio of advection to magnetic diffusion
Hartmann number	$\mathrm{Ha} = \ \boldsymbol{B} \ h_0 \sqrt{\frac{\varsigma}{\eta}}$	Ratio of Lorentz to viscous forces

NAS

Derivation of the MHD Reynolds equation with temporal inertia

- 3. Impose assumptions
 - i. Newtonian fluid and incompressible flow
 - ii. Flow domain is a thin film (i.e. $\varepsilon \ll 1$)
 - iii. Magnetic field is quasi-steady (i.e. ${\rm Re}_m \ll 1$)
 - iv. Temporal inertia dominates convective inertia (i.e. $\frac{\text{Re}}{\text{Re}_s} \rightarrow 0$, $\text{Re}_s > 1$)



NAS

Derivation of the MHD Reynolds equation with temporal inertia

4. Integrate continuity equation over film thickness

$$\tilde{\nabla} \cdot \int_{0}^{\tilde{h}(\tilde{\boldsymbol{x}},\tilde{t})} \tilde{\boldsymbol{u}} \, d\tilde{x}_{3} = -\frac{\partial \tilde{h}}{\partial \tilde{t}}$$

where:

$$\tilde{\boldsymbol{x}} = \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix}, \quad \tilde{\nabla} = \begin{pmatrix} \frac{\partial}{\partial \tilde{x}_1} \\ \frac{\partial}{\partial \tilde{x}_2} \end{pmatrix}, \quad \tilde{\boldsymbol{u}} = \begin{pmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{pmatrix}$$

5. Use the momentum equations to evaluate above integral

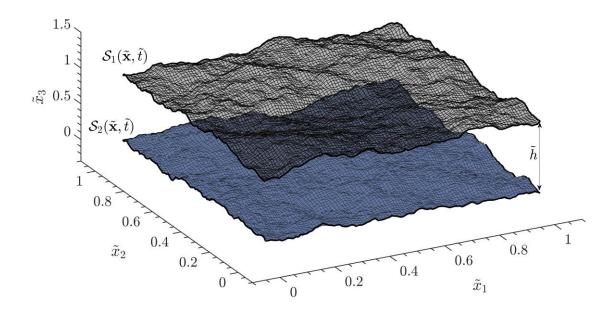
Generalized MHD Reynolds Equation

$$\tilde{\nabla} \cdot \left(\kappa \tilde{\nabla} \tilde{p}\right) = \mathrm{Ha}^3 \frac{\partial \tilde{h}}{\partial \tilde{t}} + \mathrm{Re}_s \kappa \frac{\partial^2 \tilde{h}}{\partial \tilde{t}^2}$$

$$(\kappa \circ \tilde{h})(\tilde{\boldsymbol{x}}, \tilde{t}) = \operatorname{Ha} \tilde{h}(\tilde{\boldsymbol{x}}, \tilde{t}) - 2 \operatorname{tanh}\left(\operatorname{Ha} \frac{\tilde{h}(\tilde{\boldsymbol{x}}, \tilde{t})}{2}\right)$$
 ("flow conductivity")

NAS

Surface roughness in the Reynolds equation



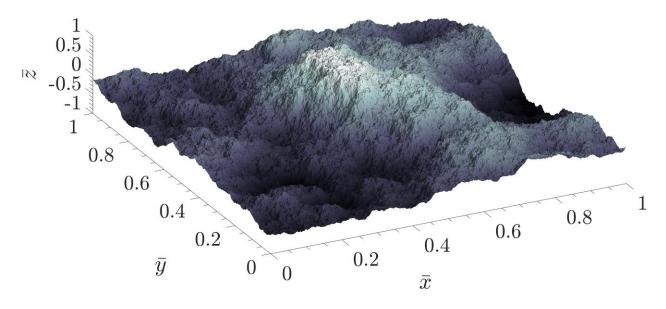
 $\tilde{h}(\tilde{\boldsymbol{x}},t) = \mathcal{S}_1(\tilde{\boldsymbol{x}},\tilde{t}) - \mathcal{S}_2(\tilde{\boldsymbol{x}},\tilde{t}))$ $\mathcal{S}_1 \equiv \text{top surface}$ $\mathcal{S}_2 \equiv \text{bottom surface}$

- Film thickness depends on the topographies of the bounding surfaces
- Digital representation of real surfaces is not trivial
- Properties change with resolution of measuring device
- Scale-independent characterization parameters are desired

Weierstrass-Mandelbrot fractal

- Fractals can be used to generate scale-invariant topographies
- Possess self-similar structure (asperities upon asperities)
- Construction similar to a Fourier series:

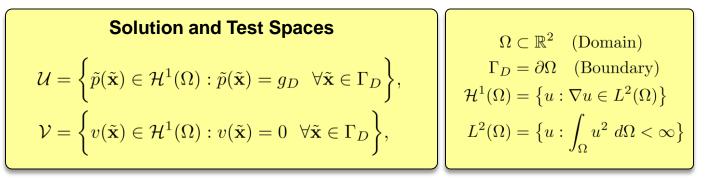
$$\mathcal{S}(x) = \Re \left[\sum_{n=-\infty}^{\infty} \gamma^{(D-2)n} (1 - e^{i\gamma^n x}) e^{i\phi_n} \right] \qquad D \equiv \text{fractal dimension} \\ \gamma \equiv \text{frequency density}$$



TFAWS 2018 - August 20-24, 2018

Weak form

- FEM based on the weak formulation
- No longer have to differentiate κ
- Dirichlet boundary conditions built into the solution space



Weak form of the MHD Reynolds equation

Find $\tilde{p} \in \mathcal{U}$ such that $\forall v \in \mathcal{V}$:

$$\int_{\Omega} \kappa \tilde{\nabla} \tilde{p} \cdot \tilde{\nabla} v \ d\Omega - \int_{\omega} v \operatorname{Ha}^{3} \frac{\partial \tilde{h}}{\partial \tilde{t}} \ d\Omega - \int_{\Omega} v \operatorname{Re}_{s} \kappa \frac{\partial^{2} \tilde{h}}{\partial \tilde{t}^{2}} \ d\Omega = 0$$

Galerkin FEM

- Solution and test functions projected onto finite element space with linear basis functions
- Numerical integration via Gauss quadratures
- Results in the linear system:

$$Ap = L$$

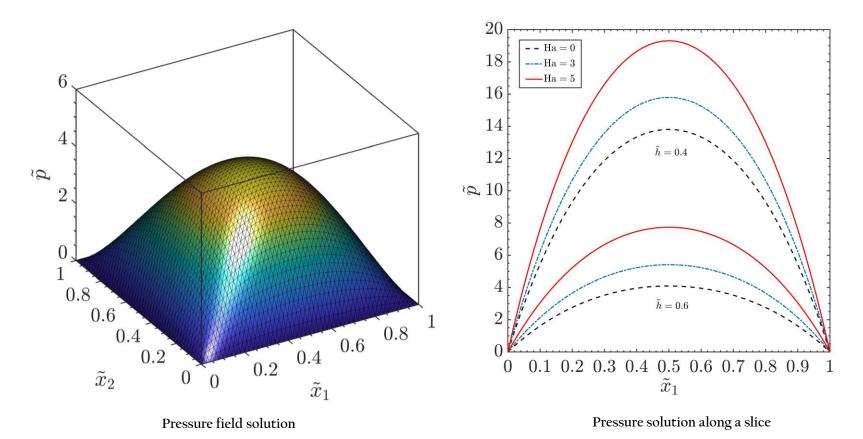
where:

$$\begin{aligned} A_{ij} &= \int_{\Omega} \kappa \tilde{\nabla} N_j \cdot \tilde{\nabla} N_i \ d\Omega \\ L_i &= \int_{\omega} N_i \text{Ha}^3 \frac{\partial \tilde{h}}{\partial \tilde{t}} \ d\Omega + \int_{\Omega} N_i \text{Re}_s \kappa \frac{\partial^2 \tilde{h}}{\partial \tilde{t}^2} \ d\Omega \\ p_i &= p(\mathbf{x}_i) \\ N_i &\equiv \text{Nodal basis} \end{aligned}$$

Problem 1: Smooth surfaces, varying magnetic field strength

Parameters:

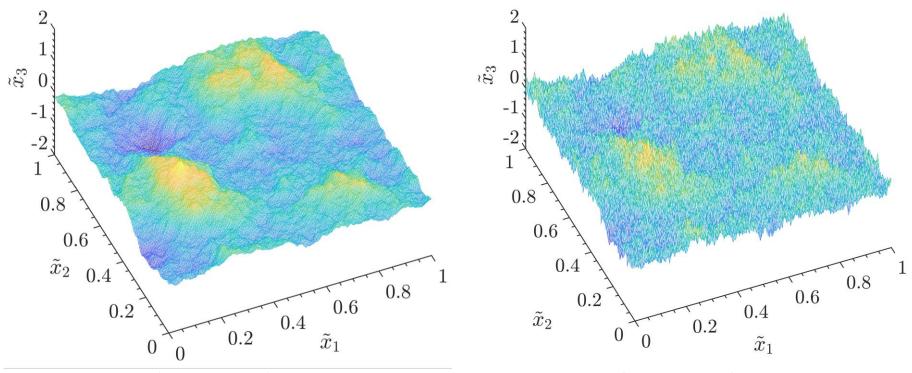
 $\Omega = \mathbb{R}(0,1)^2$ (unit square), $\frac{\partial \tilde{h}}{\partial \tilde{t}} = 1$, $\operatorname{Re} = 0$ Boundary conditons: $\tilde{p}(\boldsymbol{x}) = 0$, $\boldsymbol{x} \in \Gamma_D$



TFAWS 2018 – August 20-24, 2018

Problem 2: Rough surfaces, varying fractal dimension

Parameters: $\Omega = \mathbb{R}(0, 1)^2$ (unit square), $\frac{\partial \tilde{h}}{\partial \tilde{t}} = 1$, Re = 0, Ha = 0, $\tilde{h} = 1$ Boundary conditons: $\tilde{p}(\boldsymbol{x}) = 0$, $\boldsymbol{x} \in \Gamma_D$

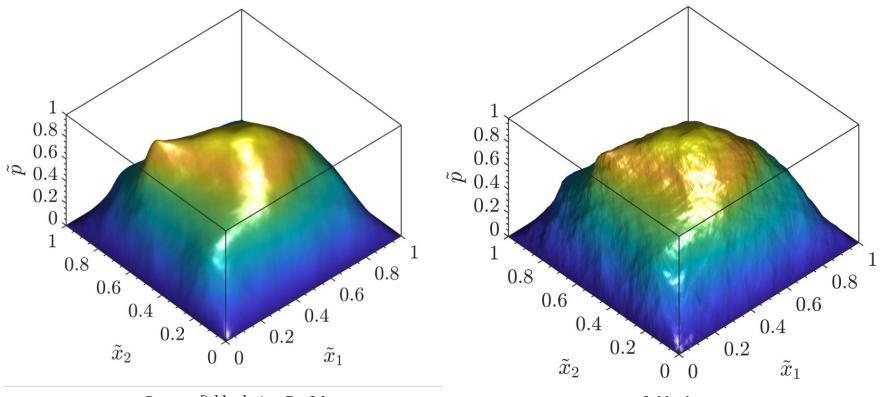


Fractal top surface mesh, 80,000 finite elements, D = 2.3

Fractal top surface mesh, 80,000 finite elements, D = 2.8

Parameters: $\Omega = \mathbb{R}(0,1)^2$ (unit square), $\frac{\partial \tilde{h}}{\partial \tilde{t}} = 1$, $\operatorname{Re} = 0$, $\operatorname{Ha} = 0$, $\tilde{h} = 1$

Boundary conditons: $\tilde{p}(\boldsymbol{x}) = 0, \quad \boldsymbol{x} \in \Gamma_D$



Pressure field solution, D = 2.3

Pressure field solution, D = 2.8

TFAWS 2018 – August 20-24, 2018

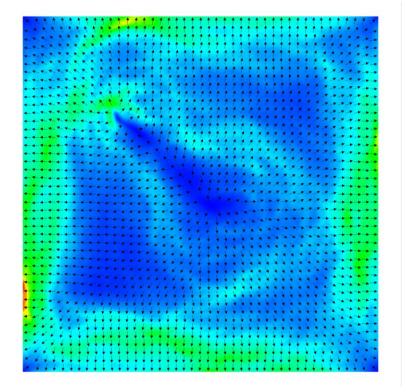


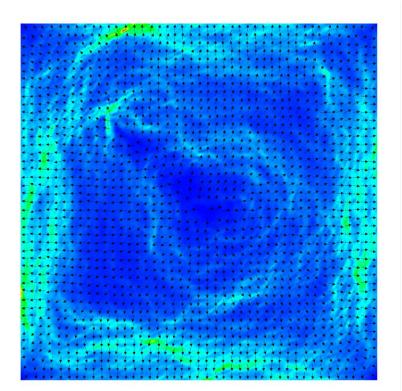
Problem 2: Rough surfaces, varying fractal dimension

Parameters:

 $\Omega = \mathbb{R}(0,1)^2$ (unit square), $\frac{\partial \tilde{h}}{\partial \tilde{t}} = 1$, $\operatorname{Re} = 0$, $\operatorname{Ha} = 0$, $\tilde{h} = 1$

Boundary conditons: $\tilde{p}(\boldsymbol{x}) = 0, \quad \boldsymbol{x} \in \Gamma_D$





Velocity field, D = 2.3

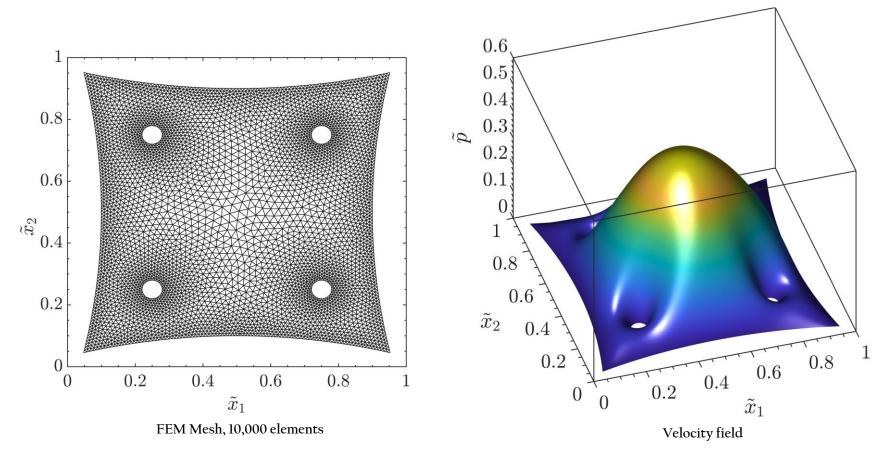
Velocity field, D = 2.8

Problem 3: Arbitrary surface geometry/topology

Parameters:

$$\frac{\partial \tilde{h}}{\partial \tilde{t}} = 1, \quad \text{Re} = 0, \quad \text{Ha} = 0, \quad \tilde{h} = 1$$

Boundary conditons: $\tilde{p}(\boldsymbol{x}) = 0, \quad \boldsymbol{x} \in \Gamma_D$



TFAWS 2018 – August 20-24, 2018

Outline

Part I: quasi-steady analysis

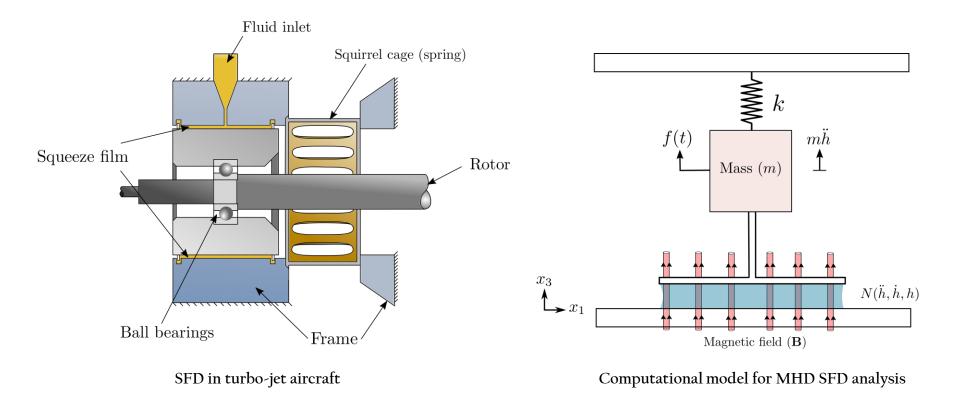
- 1. Develop a general governing equation for MHD squeeze-films
- 2. Introduce fractals for modeling real surface topography
- 3. Apply the FEM to solve the flow problem
- 4. Conduct quasi-steady numerical studies

Part II: transient analysis

- 1. Incorporate MHD squeeze-film model into a nonlinear mass-springdamper model
- 2. Apply implicit time-integration to solve nonlinear equation of motion
- 3. Conduct time-domain numerical studies to evaluate MHD damper performance

Modeling a SFD on a single DOF oscillator

- Incorporate actual fluid dynamics for the damping in dynamic models
- Modeling the fluid with the MHD Reynolds equation makes the model computationally efficient



NASA

Nonlinear mass-spring-damper system

$$m\ddot{h} + N(\ddot{h}, \dot{h}, h) + k(h - h_0) = f(t)$$

- $N(\ddot{h},\dot{h},h)$ is the nonlinear damping force from the SFD
- Damping force computed from the Reynolds equation solution

$$N(\ddot{h},\dot{h},h) = \int_{\Omega} p \ d\Omega = \int_{\Omega} \mathcal{L}^{-1} \left(\mathrm{Ha}^{3}\dot{h} + \mathrm{Re}_{s}\kappa\ddot{h} \right) \ d\Omega$$

where: $\mathcal{L}(\cdot) = \nabla \cdot (\kappa \nabla(\cdot))$

• Results in a nonlinear integro-differential equation

$$m\ddot{h} + \int_{\Omega} \mathcal{L}^{-1} \left(\mathrm{Ha}^{3}\dot{h} + \mathrm{Re}_{s}\kappa\ddot{h} \right) \, d\Omega + k(h - h_{0}) = f(t)$$

Newmark-Beta method with Newton-Raphson iterations

- Choose Newmark parameters corresponding to linear expansion of \ddot{h}
- For each time-step n, we solve a nonlinear problem:

Newton-Raphson system in incremental form

$$\mathbf{J}\delta h_{n+1} = \mathbf{R}(\delta \ddot{h}_{n+1}, \delta \dot{h}_{n+1}, \delta h_{n+1})$$

where:
$$J = \left(\frac{6m}{\Delta t^2} + k\right)$$
$$R(\delta\ddot{h}_{n+1}, \delta\dot{h}_{n+1}, \delta h_{n+1}) = \delta f(t_{n+1}) - \delta N(\ddot{h}_{n+1}, \dot{h}_{n+1}, \dot{h}_{n+1}) + 3m\ddot{h}_n + \frac{6m}{\Delta t}\dot{h}_n$$

• Once converged, update the solution for next time step

$$\begin{aligned} h_{n+1} &= h_n + \delta h_{n+1} \\ \dot{h}_{n+1} &= -2\dot{h}_n - \frac{\Delta t}{2}\ddot{h}_n + \frac{3}{\Delta t}\delta h_{n+1} \\ \ddot{h}_{n+1} &= -m^{-1} \big[k(h_{n+1} - h_0) + n(\ddot{h}_{n+1}, \dot{h}_{n+1}, \dot{h}_{n+1}) - f(t) \big] \end{aligned}$$

TFAWS 2018 - August 20-24, 2018

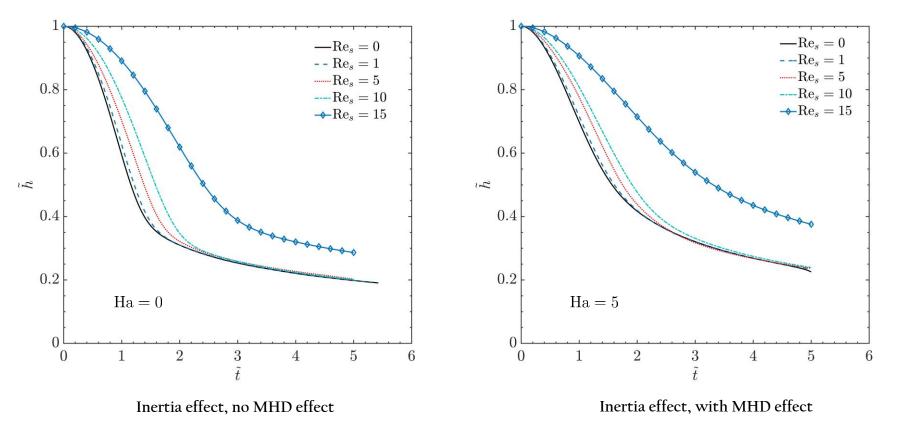
Problem 1: Constant load with temporal inertia effects

Parameters:

 $\Omega = \mathbb{R}(0,1)^2 \text{ (unit square)}, \quad f(t) = -1, \quad m = 1, \quad k = 0$

Initial conditions:

 $h_0 = 1, \quad \dot{h}_0 = 0$



TFAWS 2018 – August 20-24, 2018

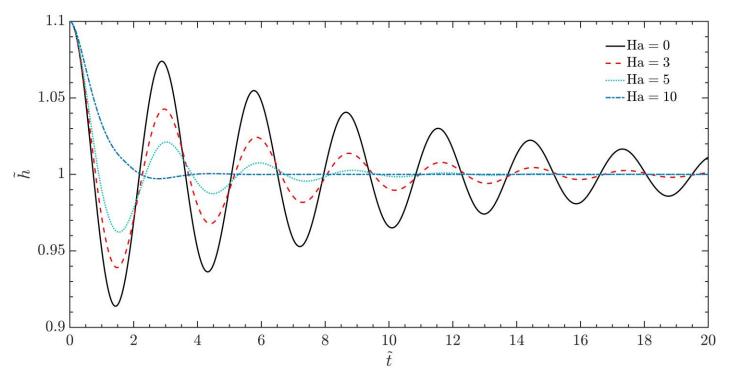
Problem 2: Free vibration with varying magnetic field strength

Parameters:

 $\Omega = \mathbb{R}(0,1)^2$ (unit square), f(t) = 0, m = 1, k = 5, $\operatorname{Re}_s = 1$

Initial conditions:

 $h_0 = 1.1, \quad \delta h_0 = .1, \quad \dot{h}_0 = 0$



Free vibration with inertia and MHD effects

TFAWS 2018 - August 20-24, 2018

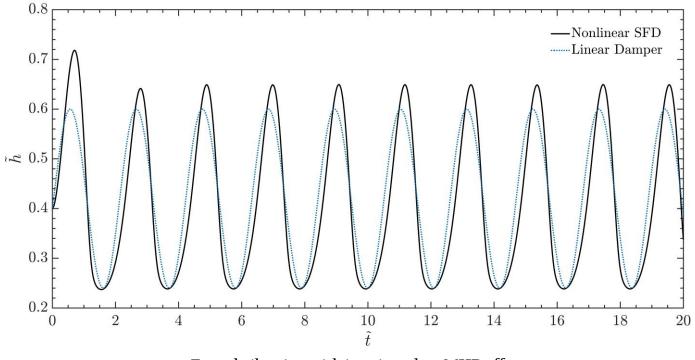
Problem 3: Forced vibration highlighting nonlinearity

Parameters:

$$\begin{split} \Omega &= \mathbb{R}(0,1)^2 \text{ (unit square)}, \quad f(t) = 5\cos(3t), \quad m=1, \quad k=5, \quad \mathrm{Re}_s = 1, \\ \mathrm{Ha} &= 0 \end{split}$$

Initial conditions:

 $h_0 = 0.4, \quad \delta h_0 = 0, \quad \dot{h}_0 = 0$



Forced vibration with inertia and no MHD effects

Problem 4: Modal analysis via white-noise excitation

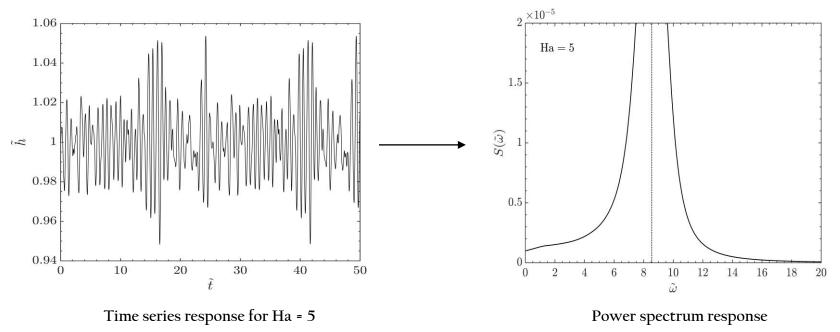
• Excite with a white-noise forcing signal

Parameters: $\Omega = \mathbb{R}(0, 1)^2$ (unit square), m = 1, k = 75, $\operatorname{Re}_s = 0$

Excitation: $f(t) = A \sum_{n=0}^{n_c} \cos(n\omega t + \phi_n), \quad A = 0.1, \quad n_c = 200, \quad \omega = 0.25$

Initial conditions: $h_0 = 1, \quad \delta h_0 = 0, \quad \dot{h}_0 = 0$

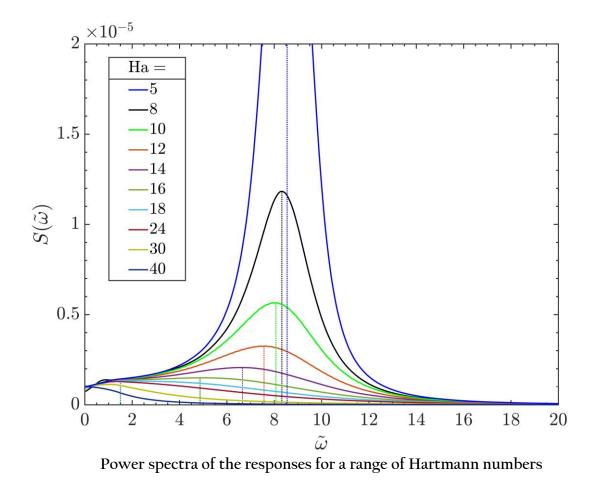
• Determine the resonant mode by computing the power spectrum of the response



TFAWS 2018 – August 20-24, 2018

Problem 4: Modal analysis via white-noise excitation

• Repeat the process with varying magnetic field strength



TFAWS 2018 – August 20-24, 2018

Conclusions

Part I – quasi-steady analysis

- Novel derivation of an extension to the Reynolds equation permits modelling of MHD effects and temporal inertia (added mass) in SFDs
- MHD forces may augment the role of viscous damping
- Surface roughness can significantly influence the flow
- FEM provides an optimal solution and relaxes regularity requirements of flow conductivities

Part II – transient analysis

- Incorporating the SFD force in a dynamic system yields a nonlinear integrodifferential equation
- Problem integrated in time with a Newmark/Newton-Raphson approach
- Damping properties of the system can be controlled with varying magnetic field strength

Thank you!

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1450681.

