TFAWS Active Thermal Paper Session

A volume of fluid numerical algorithm for simulating multiphase incompressible flows with large density discontinuities

Joshua J. Wagner & C. Fred Higgs III Particle Flow and Tribology Laboratory (PFTL) Department of Mechanical Engineering Rice University

> Presented By Joshua J. Wagner

> > Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX

TFAWS

JSC • 2018

ANALYSIS WORKSHOP

&

HERNASI

- Multiphase flow applications
- Modeling multifluid flows with volume of fluid (VOF)
 - Numerical algorithm
 - Volume fraction advection schemes
 - Test problems
- Multifluid flows with large, discontinuous density jumps
 - Difficulties, solution, and test problems
- Incorporating additional interfacial physics
 - Surface tension
 - Wall adhesion
- Conclusion

Multiphase flow applications

Multiphase flow is the simultaneous flow of material in different phases or in the same phase but with different flow properties

Liquid-Gas (multifluid)

- Atomization of cryogenic propellant
- Fuel sloshing in tanks
- Lubrication systems

Liquid-Liquid (multifluid)

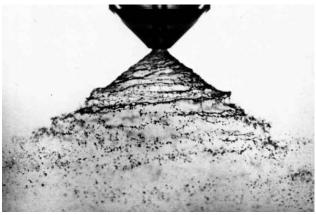
- Oil dispersion in water
- Microfluidics

Gas-Solid

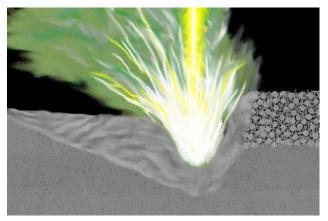
- Particle-laden rocket plumes
- Dust storms

Liquid-Gas-Solid

- Additive manufacturing
- Nuclear and chemical reactors



Liquid jet atomization (Van Dyke, M., 1982)



Melt pool in laser additive manufacturing (www.stratonics.com)

Volume of Fluid (VOF) method:

 $\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = \nabla p + \nabla \cdot \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) + \mathbf{F}_B \quad \text{on } \Omega \quad \forall t \in (0, T)$

| C = 0.00 |
|----------|----------|----------|----------|----------|
| C = 0.40 | C = 0.15 | C = 0.00 | C = 0.00 | C = 0.00 |
| C = 1.00 | C = 0.70 | C = 0.35 | C = 0.00 | C = 0.00 |
| C = 1.00 | C = 1.00 | C = 0.75 | C = 0.20 | C = 0.22 |
| C = 1.00 | C = 1.00 | C = 1.00 | C = 0.96 | C = 0.94 |

VOF representation of a fluid interface

 $\nabla \cdot \mathbf{u} = 0$ on Ω $\forall t \in (0, T)$

$$\rho = C\rho_1 + (C - 1)\rho_2$$

$$\mu = C\mu_1 + (C - 1)\mu_2$$

$$\frac{\partial C}{\partial t} + \nabla \cdot (C\mathbf{u}) = 0$$

Symbol	Variable	
u	Velocity	
p	Pressure	
ρ	Density	
μ	Dynamic viscosity	
f	Acceleration due to body force	
C	Cell volume fraction	

Two-step projection method:

1. Calculate provisional velocity (u^*) ignoring pressure gradient term

$$\frac{(\rho \mathbf{u})^* - (\rho \mathbf{u})^n}{\Delta t} = -\mathbf{A}_h^n + \mathbf{D}_h^n + \mathbf{F}_B^n \qquad \mathbf{A}_h^n = \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}), \\ \mathbf{D}_h^n = \nabla \cdot \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T)^n$$

2. Solve Poisson equation for pressure

$$\nabla \cdot \left(\frac{1}{\rho^{n+1}} \nabla p^{n+1}\right) = \frac{1}{\Delta t} \nabla \cdot \mathbf{u}^*$$

3. Correct provisional velocity to be divergence-free

$$\frac{(\rho \mathbf{u})^{n+1} - (\rho \mathbf{u})^*}{\Delta t} = -\frac{1}{\rho^{n+1}} \nabla p^{n+1}$$

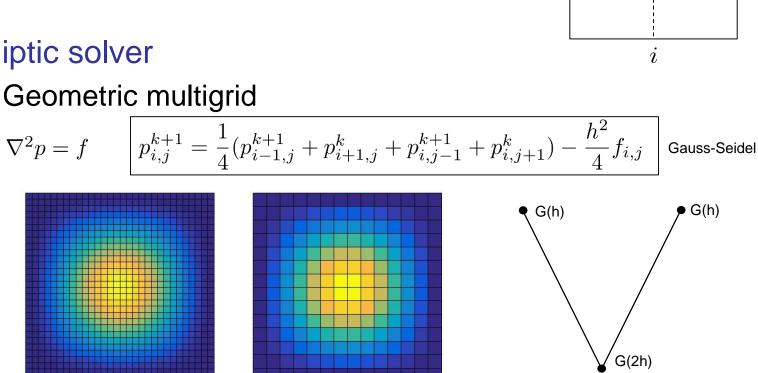
Discretization

- Finite volume on staggered, Cartesian • grid
- Van Leer's scheme for convective term •

Elliptic solver

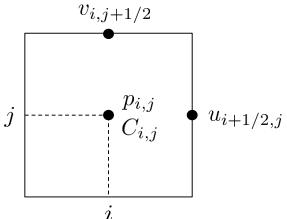
Geometric multigrid •

G(h)



TFAWS 2018 – August 20-24, 2018

G(2h)



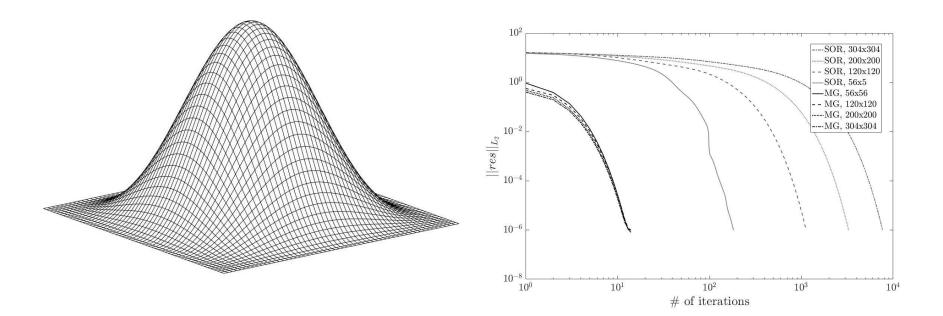
Two-grid V-cycle

Multigrid test problem

$$\nabla \cdot \beta \nabla \phi = \theta$$

$$\beta = -1, \quad \theta = -2\pi^2 \big(\cos(2\pi x) \sin(\pi y) + \cos(2\pi y) \sin(\pi x) \big)$$

$$\phi = 0 \text{ on } \partial \Omega$$



Lid-driven cavity

$$u = U, v = 0$$

$$u = 0$$

$$v = 0$$

$$\rho, \mu$$

$$u = 0$$

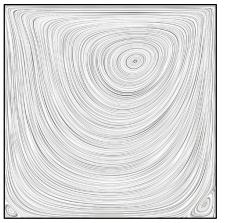
$$v = 0$$

$$u = 0, v = 0$$

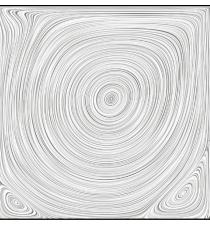
Re = 40,000

Single-phase flow test

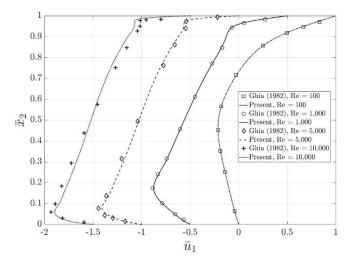
Lid-driven cavity



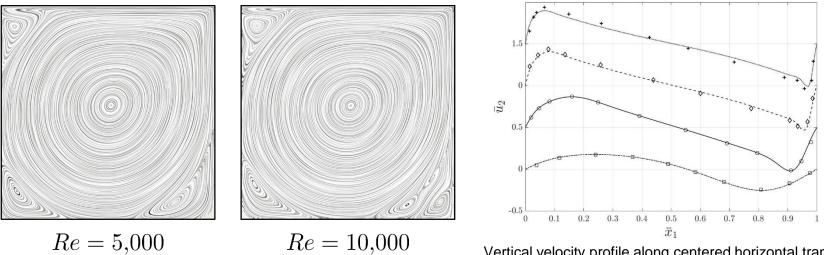
Re = 100



Re = 1,000



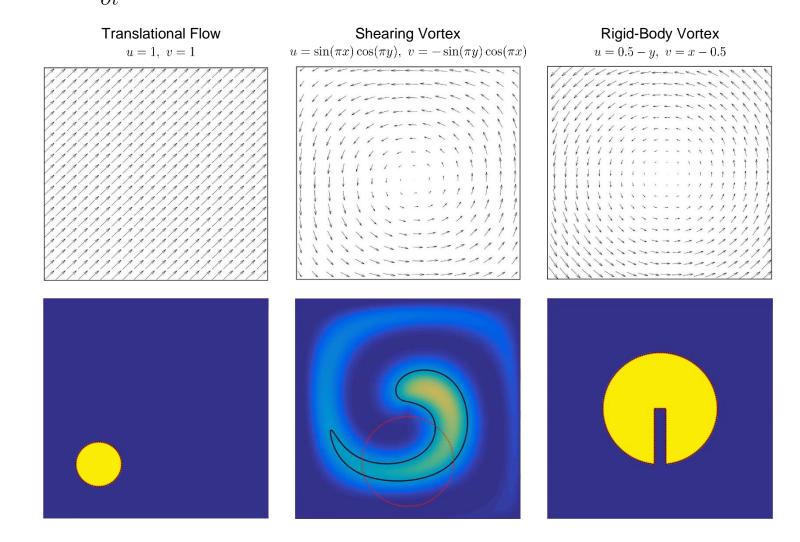
Horizontal velocity profile along centered vertical transect



Vertical velocity profile along centered horizontal transect

TFAWS 2018 - August 20-24, 2018

Solving $\frac{\partial C}{\partial t} + \nabla \cdot (C\mathbf{u}) = 0$ with upwind finite differences



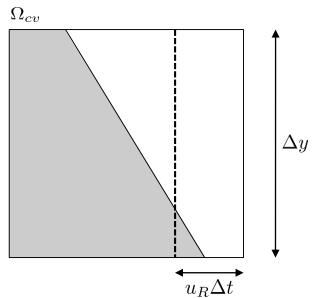
NASA

Finite volume approach

$$\frac{\partial C}{\partial t} + \nabla \cdot (C\mathbf{u}) = 0$$

$$\frac{1}{V_{\Omega_{cv}}} \iint_{\Omega_{cv}} \left(\frac{\partial C}{\partial t} + \nabla \cdot (C\mathbf{u}) \right) d\Omega = 0$$

$$\frac{\partial C}{\partial t} + \frac{1}{V_{\Omega_{cv}}} \oint_{\partial \Omega_{cv}} \bigg(C(\mathbf{u} \cdot \hat{\mathbf{n}}) \bigg) ds = 0$$



$$\frac{C^{n+1} - C^n}{\Delta t} = -\frac{1}{\Delta x \Delta y} \left(u_R C \Delta y - u_L C \Delta y + v_T C \Delta x - v_B C \Delta x \right)$$

$$C^* = C^n - \frac{1}{\Delta x \Delta y} \left(FV_R - FV_L \right)$$
$$C^{n+1} = C^* - \frac{1}{\Delta x \Delta y} \left(FV_T - FV_B \right)$$

Piecewise Linear Interface Calculation (PLIC)

- 1. Reconstruct interface
 - Calculate interface normal vector

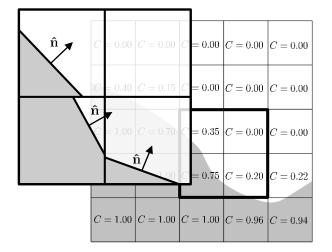
 $\mathbf{\hat{n}} = \frac{-\nabla C}{||\nabla C||}$

Cut cell using volume fraction

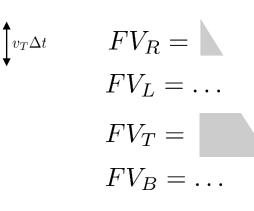
 Δy

2. Compute fluxed volumes

 $u_R \Delta t$



VOF representation of a fluid interface

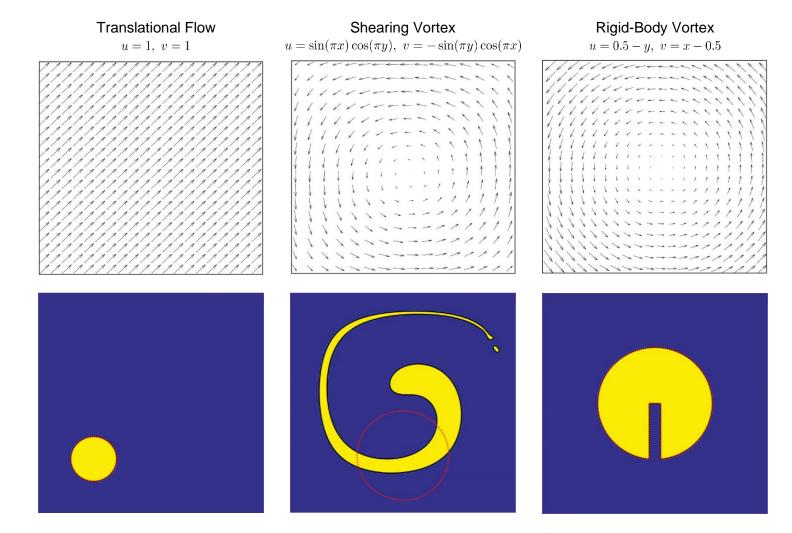


Top face

 Δx

TFAWS 2018 - August 20-24, 2018

Solving $\frac{\partial C}{\partial t} + \nabla \cdot (C\mathbf{u}) = 0$ with PLIC

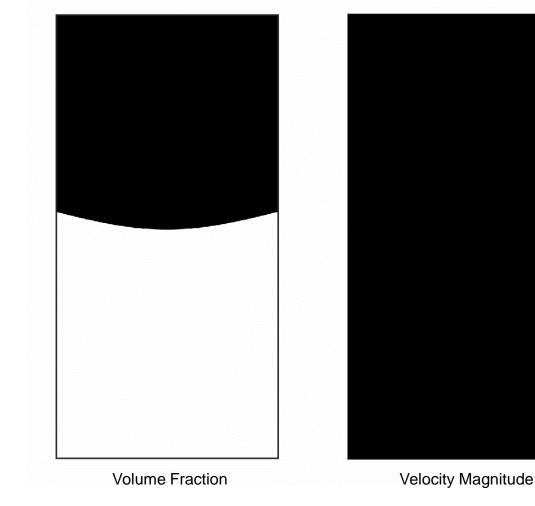


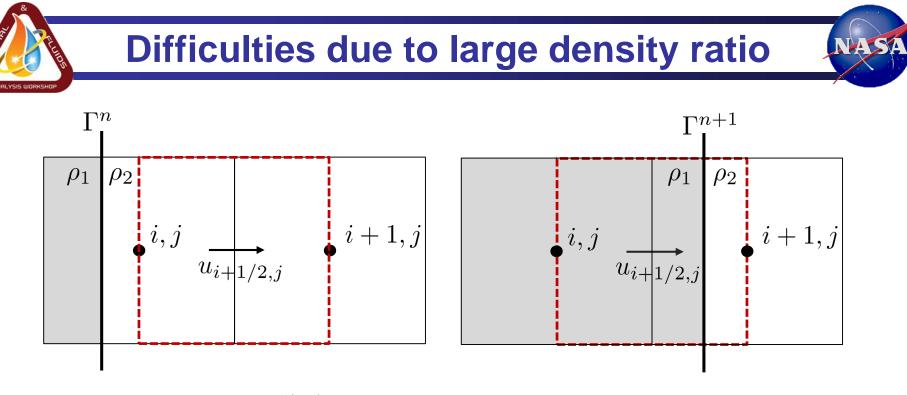
TFAWS 2018 - August 20-24, 2018

Multifluid flow test (small density ratio)

Rayleigh-Taylor Instability

 $\rho_1/\rho_2 = 1.25$





$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = \nabla p + \nabla / \tau + \mathbf{v}_B$$

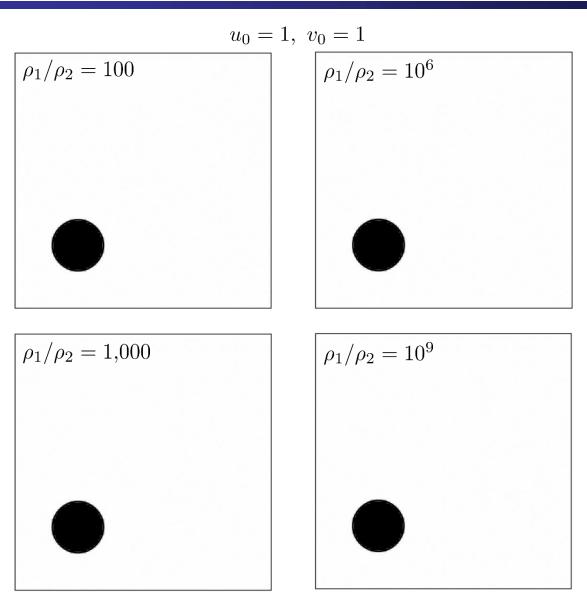
$$\frac{(\rho \mathbf{u})_{i+1/2,j}^* - (\rho \mathbf{u})_{i+1/2,j}^n}{\Delta t} = -\nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u})_{i+1/2,j}^n$$

$$\rho_{i+1/2,j} = \frac{1}{2}(\rho_{i+1,j} + \rho_{i,j})$$

Is this a good approximation?

TFAWS 2018 - August 20-24, 2018

Large density ratio flow tests



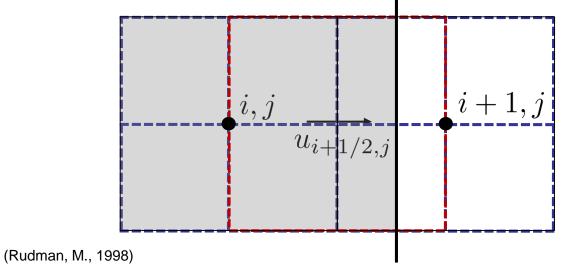
Consistent mass-momentum advection

$$(\rho \mathbf{u})_{i+1/2,j}^* - (\rho \mathbf{u})_{i+1/2,j}^n = -\Delta t \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u})_{i+1/2,j}^n$$

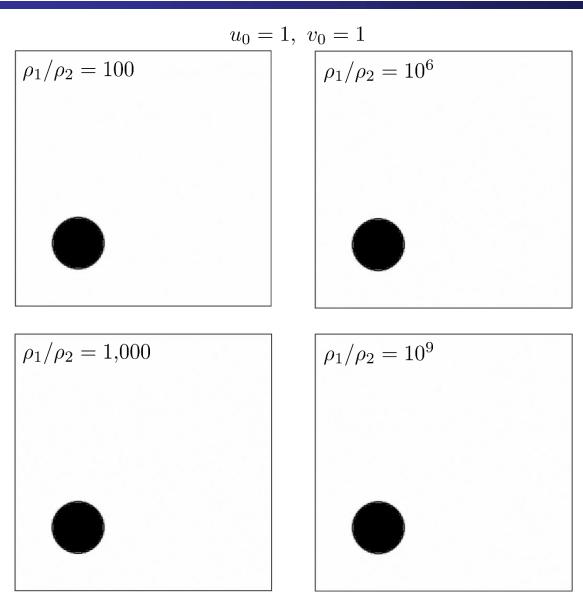
$$\frac{\Delta t}{V_{\Omega_{cv}}} \iint_{\Omega_{cv}} \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u})_{i+1/2,j}^n d\Omega = \frac{\Delta t}{V_{\Omega_{cv}}} \oint_{\partial \Omega_{cv}} \rho \mathbf{u} (\mathbf{u} \cdot \hat{\mathbf{n}}) ds$$

$$(\rho \mathbf{u})_{i+1/2,j}^* - (\rho \mathbf{u})_{i+1/2,j}^n = -\frac{1}{\Delta x \Delta y} \left(\langle \rho \mathbf{u}_{i+1,j} \Delta t \Delta y \rangle \mathbf{u}_{i+1,j} - \langle \rho \mathbf{u}_{i,j} \Delta t \Delta y \rangle \mathbf{u}_{i,j} \right)$$

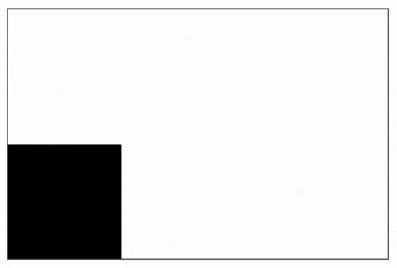
$$\underbrace{m_{i+1,j}}_{m_{i+1,j}} \underbrace{m_{i,j}}_{m_{i,j}}$$



Large density ratio flow tests



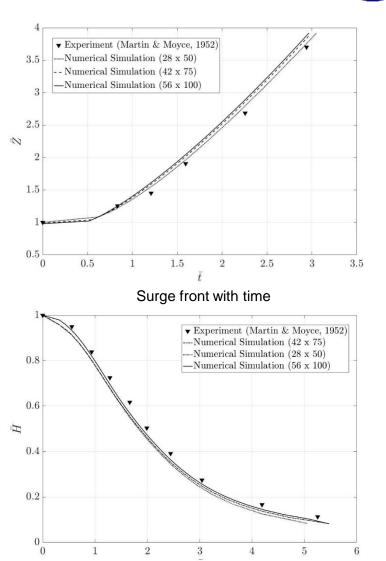
Collapsing water column (dam break)



Volume Fraction

Velocity Magnitude

TFAWS 2018 - August 20-24, 2018



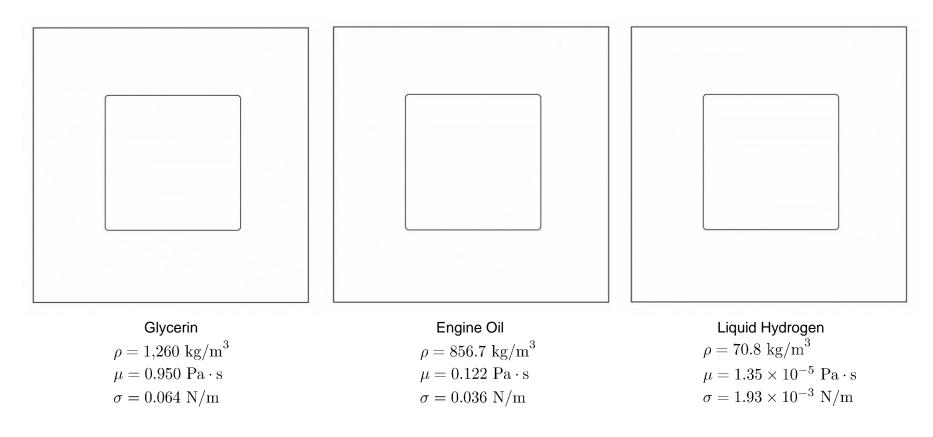
Column height with time

Surface tension

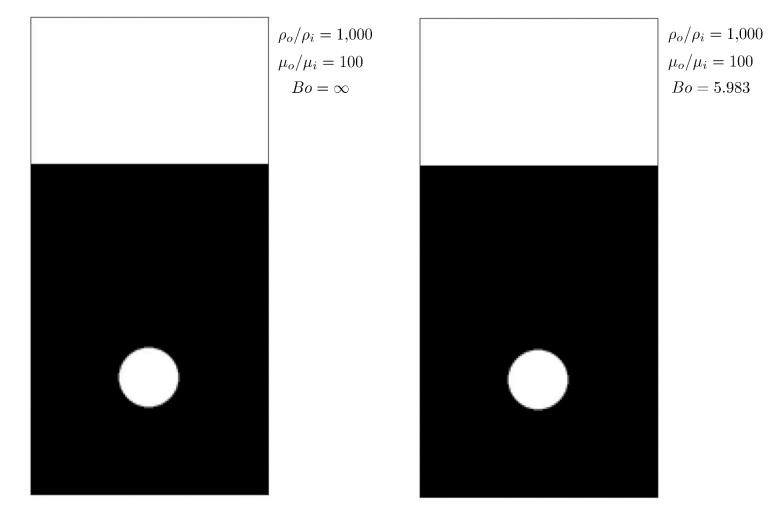
Continuum surface force (CSF) method

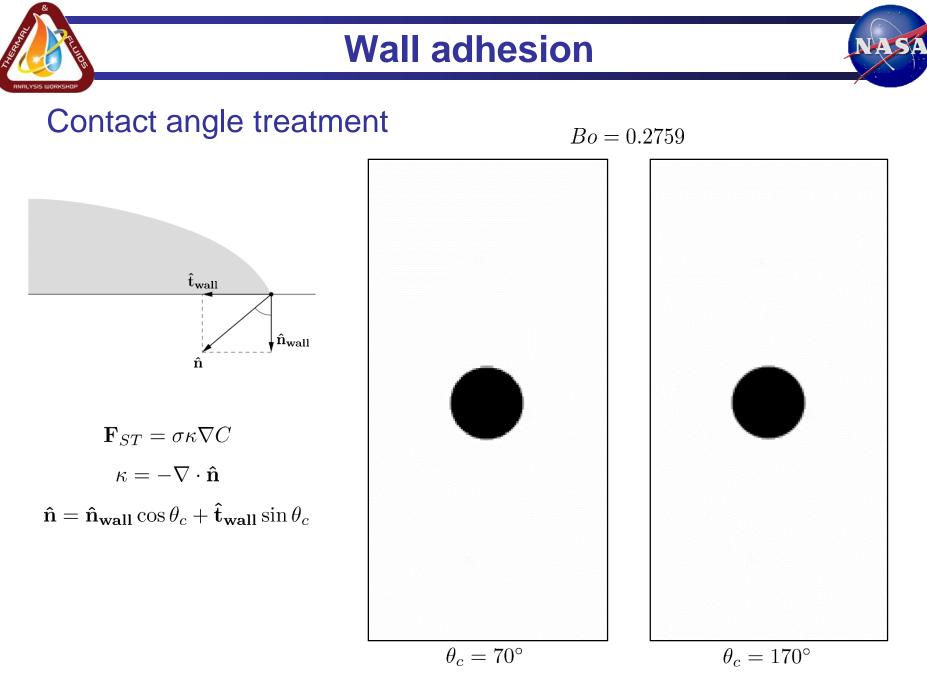
(Brackbill J.U., Kothe, D.B., and Zemach, C., 1991)

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = \nabla p + \nabla \cdot \tau + \mathbf{F}_B + \mathbf{F}_{ST}, \quad \mathbf{F}_{ST} = \sigma \kappa \nabla C, \quad \kappa = -\nabla \cdot \hat{\mathbf{n}}$$



Rising bubble in quiescent liquid





TFAWS 2018 - August 20-24, 2018

Summary

- VOF method for modeling interfacial flows with large density jumps requires:
 - 1. Scalar advection scheme that preserves sharp interfaces
 - 2. Tight coupling between mass and momentum advection

Future work

- Extend to three-dimensions
- Incorporate rigid-body dynamics module for fluid-object interaction
- Employ framework to investigate interfacial flow problems in additive manufacturing, aerospace, energy, biomedical, and other applications

- American Institute of Aeronautics and Astronautics Foundation
- Rice undergraduate researchers:
 - Rahul Kilambi
 - Natalie Pippolo

- Rudman, M. (1998). A volume-tracking method for incompressible multifluid flows with large density variations. *International Journal for numerical methods in fluids*, *28*(2), 357-378.
- Bussmann, M., Kothe, D. B., & Sicilian, J. M. (2002, January). Modeling high density ratio incompressible interfacial flows. In ASME 2002 Joint US-European Fluids Engineering Division Conference (pp. 707-713). American Society of Mechanical Engineers.
- Raessi, M., & Pitsch, H. (2012). Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method. *Computers & Fluids*, *63*, 70-81.
- Rider, W. J., & Kothe, D. B. (1998). Reconstructing volume tracking. *Journal of computational physics*, *141*(2), 112-152.
- Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. *Journal of computational physics*, *100*(2), 335-354.