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1 Abstract

The theory of thermal radiation as applied to cryogenic surfaces is explored and
validation cases are solved in Thermal Desktop. Some results are compared to
previously published research. Additionally, new results are published regarding
cracks in both spherical and cylindrical cryogenic insulations with a cold bound-
ary of 90 K to 220 K for ten layer blankets under a variety of assumptions and
scenarios. It was found that enabling directional emission–as well as specular,
mirrorlike reflections–have little impact on the results.
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2 Introduction

Multilayer insulation (also called superinsulation or multi-layer or single-layer
insulation or simply MLI) are thermal irradiation1 or radiative emission barriers
frequently used in systems where insulation is needed in a vacuum environment.
To keep components either warm or cool, most spacecraft are covered with su-
perinsulation (besides cut outs for radiators that reject heat to space). Some
blankets–particularly ones applied to cryogenic systems–even provide some pro-
tection from micro-meteoroid orbital debris, atomic oxygen damage, electron
charge accumulation, and rocket-engine plume impingement[11, p. 161].

A high reflectivity and zero transmissivity implies a low emissivity according
to the energy balance, resulting in equation 1. More information on the deriva-
tion can be found in Fundamentals of Heat and Mass Transfer by Incropera and
DeWitt [12, p. 757].

ρ
λ

+ ε
λ

+ τ
λ

= 1 (1)

A typical blanket is made up of a stack of layers of these low-emissivity films,
such as a number of embossed, double-aluminized Kapton sheets, with or with-
out a Dacron or silk spacer. The purpose of the embossed pattern or the spacers
is simply to reduce conductive heat transfer through the random contacts be-
tween layers and spacers. A schematic of a cross section of a superinsulation
blanket is shown in Figure 1.

Figure 1: A schematic of a cross section of superinsulation, adapted from NASA [10].

Besides thermal insulation, blanket design is also constrained by require-
ments for durability, flammability, contamination control, launch loads, pres-
sure decay, spacecraft venting, glint minimization, and magnetic materials, in

1From the perspective of an object, irradiation refers to incoming radiation.
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addition to exposure to salt spray and other atmospheric exposure witnessed by
materials on the launch pad[11]. Optimization also involves minimizing mass,
cost, risk, and development time[11].

3 Theory

3.1 Electromagnetic Radiation and Heat Transfer

Typical forms of matter emit and absorb electromagnetic radiation and much of
our modern understanding of this fact has it’s roots in the revolution in physics
in the early twentieth century, after the notion of the luminiferous aether had
been discarded. In particular, the discovery of the quantum and the blackbody
spectrum helped spark a revolution in physics. The textbook University Physics:
Volume Two by Ronald Lane Reese gives a comprehensive overview2 and there
are dozens of books on the history of modern physics.

In the next section, relevant concepts are briefly reviewed. Much of this
material is adapted from The Fundamentals of Heat and Mass Transfer [12].
Note that this body of work only refers to heat transfer processes commonly
found on various spacecraft3.

3.1.1 Blackbody Radiation

Thermal radiation occurs between 10−1 µm and 102 µm. This encompasses part
of the ultraviolet spectrum, the entire visible light spectrum, and the entire in-
frared spectrum. To understand thermal radiation, the concept of the blackbody
and its properties should be defined as follows.

1. A blackbody absorbs all incident radiation, regardless of wavelength and
direction

2. For a prescribed temperature and wavelength, no surface can emit more
energy than a blackbody.

3. Although the radiation emitted by a blackbody is a function of wavelength
and temperature, it is independent of direction. That is, the blackbody is
a diffuse emitter.

No surface perfectly exhibits all of these ideal qualities. A cavity whose
inner surface exhibits a uniform temperature is the closest approximation to
a blackbody. Similarly, any small surface in the cavity experiences blackbody
irradiation for which G

λ
= E

λb
(λ, T ). This surface is diffusely irradiated, re-

gardless of orientation. Blackbody radiation exists within the cavity irrespective
of whether the cavity surface is highly reflecting or absorbing.

2The University Physics volumes give a historical flavor to the subject that is helpful for
beginning students and researchers.

3Rarified gases often behave in unexpected ways, like the solar corona, or intersteller dust,
but these kinds of heat transfer processes are not discussed in this report.
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3.1.2 The Plank Distribution

The blackbody spectral intensity is well known, having first been determined
by Plank4.

I
λb

(λ, T ) =
2hc2o

λ5(e
hco
λkT )− 1

(2)

Since the blackbody is by definition a diffuse emitter, it follows that the spec-
tral emissive power, after integration, is simply the spectral intensity multiplied
by π.

E
λb

(λ, T ) = πI
λb

(λ, T ) (3)

An example of the Plank distribution plotted for a temperature of 20K is
shown in Figure 2.

Figure 2: The famous Plank blackbody distribution, showing the emission spectrum
for some blackbody at a temperature of 20K. This curve will shift to the
left as the temperature of the blackbody increases.

In the Plank distribution, several things hold true:

1. The emitted radiation varies continuously with wavelength.

2. At any wavelength, the magnitude of the emitted radiation increases with
increasing temperature.

3. The spectral region in which the radiation is concentrated depends on
the temperature with comparatively more radiation appearing at shorter
wavelengths as the temperature increases.

4The story of the resolution of the ultraviolet catastrophe of classical theory by Plank’s
discovery of the quanta–and its repercussions– is an amazing drama any student of history
should examine.
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4. A significant fraction of the radiation emitted by the sun, which may be
approximated as a blackbody at 5800K, is in the visible region of the spec-
trum. In contrast, for T less than roughly 800K, emission is predominantly
in the infrared region of the spectrum and is not visible to the eye.

3.1.3 Wien’s Displacement Law

By differentiating with respect to wavelength and setting the result equal to zero,
Wien’s displacement law may be derived. The resulting equation is a simple
relationship between the temperature of the blackbody and the wavelength at
which peak radiation appears. Essentially, the blackbody spectral distribution
has a maximum that depends on temperature.

λmax(T ) =
Cwien
T

| Cwien = 2898 µm (4)

3.1.4 The Stefan-Boltzmann Law

By integrating equation 3 over the wavelength from zero to infinity, the Stefan-
Boltzmann Law is obtained.

E
b
(T ) = σT 4 (5)

3.1.5 Band Emission

It is often necessary to know the fraction of total emission from a body over
a certain band. This turns out to be a function of the product (λT ), which is
derived by integration. So there are tables that list the band fraction for given
products. But with any computer algebra system, we can integrate directly.

Γ
αβ

(α, β, T ) =

∫ β

α

E
λb

(λ, T )

σT 4
dλ (6)

As an example, for 90K, considering a band up to 250 µm would account
for 99% of the energy emitted. For 220K, a band up to 102 µm needs to be
considered to account for 99% of the energy (these results are shown in Figure
3).

Relevant to cryogenic superinsulation heat transfer, consider that, in Figure
3, less than 1% of the energy is in the band from 250 µm to 1000 µm for the
90K case. The wavelength here is on the order of the spacing of the insulation
(roughly 10 layers per centimeter means layer spacing is on the order of 0.1 cm
which equals 1000 µm). At 20K, the energy in the 250 µm to 1000 µm band
jumps drastically to 35%, with 1% of the energy having a wavelength between
1000 µm and 10 000 µm, which is greater than the spacing the layers. At 2K,
92% of the energy has a wavelength in this very long band from 1000 µm and
10 000 µm which is equivalent to 0.1 cm and 1 cm.
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Figure 3: A computer algebra system, like MathCAD, is very useful to avoid the
table lookup typically associated with band fractions.

So as the temperature decreases, the problem of quantum tunneling begins
to affect superinsulation performance. In this report, the studied temperature
regime is 90K to 220K, so these effects don’t come drastically into play.

3.2 Emission and absorption with real surfaces

Optical properties are a function of wavelength, directionality, and temperature.
In the case of emission, it’s the temperature of the object. In the case of
absorption, the temperature is that of the irradiating object. So the real, total,
hemispherical emissivity is just the ratio of real emission to ideal blackbody
emission5 at the temperature of the object’s surface [12, p. 746].

ε(T ) =

∫∞
0
ε
λ
(λ, T )E

λb
(λ, T )dλ

E
b
(T )

(7)

Similary, the equation for absorptivity can be written:

α(T ) =

∫∞
0
α
λ
(λ, T )G

λb
(λ, T )dλ

G
b
(T )

(8)

5Of course, equation 7 has already been integrated over the two possible directions, zenith
and azimuthal. For more information on the development of this equation, consult either The
Fundamentals of Heat and Mass Transfer by Incropera and DeWitt or Thermal Radiation
Heat Transfer by Siegel and Howell.
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3.3 Directionally dependent optical properties

In his publication Spacecraft Thermal Control Coatings References, author Lonny
Kauder supplies a derivation of directional emissivity curves for a typical dielec-
tric and a typical conductor[14]. This derivation is not repeated here6, but
some of the results are used in various Thermal Desktop (TD) models in this
report. In short, Maxwell’s equations, given a few assumptions, can be used to
describe the interaction of electromagnetic radiation with spacecraft coatings,
if the conductivity, permittivity, and permeability of the coating are known[14].

The graphs for typical, but hypothetical, emissivity curves are shown below,
which is important for this study because directionality is one of the aspects
being evaluated. In particular, the curve for the metallic surface is used in the
Thermal Desktop simulation of the seams later in this report.

Figure 4: Directional emissivity curve for a dielectric with an index of refraction of
n = 1.5 [14]

On the ratio of hemispherical to normal, Siegel writes[23, p. 121],

For polished metals when ε′n is less than about 0.5, the hemispherical
emissivity is larger than the normal value because of the increase
in emissivity in the direction near tangency to the surface, as was
pointed out in Figure 6. Hence, in a table listing emissivity values
for polished metals, if ε′n is given, it should be multiplied by a factor
larger than unity such as obtained from Figure 7[13].

So far, some attention has been paid on how to calculate the emissivity an-
alytically. Interestingly, Kauder reveals that in practice, it is difficult to obtain
the reflectance for any given coating over a wide enough wavelength range and
at angles of incidence greater than twenty degrees for hemispherical emittance

6Kauder’s derivations of the mathematics is clear and concise, and, in general, this is a
very good resource for spacecraft thermal control coating properties.
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Figure 5: Directional emissivity curve for a conductor with an index of refraction of
n=5.7+i9.7 [14]

as a function of temperature calculations at cryogenic temperatures[14, p. 11].
Kauder writes,

[What can be done is] to obtain the reflectance at near normal angles
of incidence from 1 to 200 microns. The emittance as a function
of temperature can then be calculated assuming the coating to be
Lambertian (perfectly diffuse). This assumption can lead to non-
trivial errors in the calculated emittance since most coatings may
not be diffuse, especially at longer wavelengths. The inherent error
in the reflectance measurement at longer wavelengths is also a cause
for increased error in the calculation. The result is an emittance
tempertaure curve with nontrivial error bars.

3.4 Kirchhoff’s Law

Consider a large, isothermal enclosure of temperature Ts within which several
comparatively small bodies are confined. The irradiation from the walls is diffuse
and equivalent to having come from a blackbody (blackbody cavity due to all the
reflections and emissions), regardless of orientation. In steady state conditions,
G = Eb(Ts) and all the bodies’ temperatures equal to Ts. With simple math
and conservation of energy, we can show that Ei(Ts)/αi = Eb(Ts) [12, p. 763]
for every surface i. Since the absorptivity is less than or equal to one, this
means that no real surface can emit more power than a blackbody at the same
temperature. But it also shows that for any surface in the enclosure, total,
hemispherical absorptivity equals the total, hemispherical emissivity.

Thus, for an isothermal enclosure, the absorptivity equals the emissivity for
each surface. If the irradiation or the surface is diffuse, then the wavelength
dependent (spectral) absorptivity equals the wavelength dependent emissivity.
More generally, the directional and spectral absorptivity equals the directional
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Figure 6: This relationship, derived from electromagnetic theory for a hypotheti-
cal ideal conductor, is where the often cited guideline that hemispherical
emissivity is 1.3 times the normal emissivity originates [14].

and spectral emissivity. This thought experiment can be thought of as the basic
conceptual definition of the gray surface[24].

3.5 The gray surface

The conditions under which the emissivity and absorptivity equations were de-
rived, having to do with Kirchoff’s Law, assumed irradiation due to emission
from a blackbody at the same temperature as the surface. Clearly, this case is
limiting. Luckily, the same mathematics can be extended to more cases if the
diffuse-gray assumption may be applied. In other words, the absorptivity may
be assumed to be equal to the emissivity.

For a surface to be considered gray, a pre-requisite is that either the irra-
diation is diffuse or the surface is diffuse (independent of direction). Diffuse
irradiation is a reasonable approximation for many engineering calculations and
the second condition is reasonable for many surfaces, particularly for electrically
non-conducting materials. If either the irradiation corresponds to emission from
a blackbody at the surface temperature, or if the surface is itself gray (indepen-
dent of the spectrum) then the gray assumption holds. The gray assumption
simply means the absorptivity is independent of wavelength over the spectrum
of irradiation, and, similarly, the emissivity is independent of wavelength over
the spectrum of emission.

Although the assumption of a gray surface is reasonable for many practical
applications, some caution should be exercised in its use, particularly if the
spectral regions of the irradiation and the emission are widely separated. It
is possible for a coating to radiate heat to a surface for which there is little
inherent ability to absorb the infrared energy while the integrated emittance
and absorptance would give no hint of this problem [14, p.13].

11



Figure 7: Ratio of hemispherical to normal emissivity for emission into air[13].

3.5.1 Concentric gray-diffuse spheres example

Typically, when solving basic radiation heat transfer network problems, we as-
sume constant properties, gray-diffuse, steady state with no heat generation,
and one dimensional heat transfer. In this case, the dimension of interest is
the radius of the sphere. Gray refers to the idea that both the incident flux
and emitted flux exist over the same wavelength such that the emissivity and
absorptivity may be considered equivalent over the range of temperatures and
photon wavelengths considered. We couple this assumption with diffuse because
for the total emissivity and absorptivity to be equal, we also need to assume
that there is no directionality associated with the radiation heat transfer process
(in other words, reflections have no directionality associated with them).

Let the temperature of the outer sphere be 220K and the inner sphere be
90K (see Figure 8). Assume the inner radius is 0.5m and the inner sphere’s
emissivity is 0.3. The functional definition of radiation exchange between con-
centric spheres is given by equation 9. How does the heat transfer rate vary
with radius and emissivity of the outer sphere?

q̇(ε2, r2) =
σA1(T 4

1 − T 4
2 )

1
ε1

+
(

1−ε2
ε2

)(
R1

R2

)2 (9)

Given these results, it seems we can expect that the more the outer sphere
behaves like a blackbody, the worse the heat leak into the cryogenic tank. In
other words, the smaller the outer sphere radius, and the more reflective it is,
the lower the heat leak into the inner sphere. This shows one reason why closely
spaced, metallic layers are better than layers spaced much further apart7.

7Of course, if the layers are too thin and closely spaced, then various other effects
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Figure 8: Radiation heat transfer between concentric cylinders

Figure 9: As the outer sphere tends towards a blackbody condition, the heat transfer
is increased.
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3.6 Specularly Reflecting Surfaces

Specular8 reflection refers to mirror like reflection, distinct from emission as a
function of the zenith or azimuth directions. As treated by Siegel and Howell in
their comprehensive book, Thermal Radiation Heat Transfer, all of the surfaces
in the example problem in this section are still assumed to emit in a diffuse
manner9 [23, p. 365]. Also, some of the surfaces are assumed to be specularly
reflecting.

This kind of reflection arises, as written by the authors, because ”for long
wavelength radiation, a smooth surface tends toward being optically smooth,
and the reflections tend to become more specular [23, p. 365].” In this way, a
surface that isn’t visibly smooth may yet be specular for longer wavelengths,
and whether or not it is depends on the ratio of the root-mean-square roughness
to the wavelength of radiation being considered10. If this ratio is much less than
one, then the surface may be considered optically smooth for this problem and
reflections treated specularly rather than diffusely.

σ

λ
� 1→ specular (10)

To better understand specular reflections and their relation to the geometry,
comparing two idealized cases seems useful. For example, consider two infinite,
gray, diffuse11 parallel, specularly reflecting surfaces. Because all reflected ra-
diation is heads directly back to the other surface, in this case, it turns out to
not matter. The heat transfer equation is the same as the case with diffuse
reflections[23, p. 367].

q̇1 = −q̇2 =
A1σ(T 4

1 − T 4
2 )

1/ε1(T1) + 1/ε2(T2)− 1
(11)

However, now consider radiation between concentric spheres, as shown in
Figure 10. The view factors for an enclosure formed by two spheres are well
known [12, p. 814].

Fm,n =

(
F1,1 = 0 F1,2 = 1

F2,1 = A1/A2 F2,2 = 1−A1/A2

)
(12)

become important, like wave interference, tunneling, or just long wave reflections off the
substrate[20][23, p. 375]. These effects are not considered in this work.

8Not to be confused with spectral dependence, which refers to wavelength depedence of
optical properties.

9With Thermal Desktop software, the option to include both directional emissivity (relax-
ing the diffuse assumption) and specular reflections (at whatever fraction of reflected energy
specified by the user) at will and both are studied systematically for the spherical geometry
in this study, as described later in this report.

10Usually the peak can be considered but for the sake of completeness, this should be
evaluated over the spectrum of emission.

11The surfaces can be considered directionally emitting; Siegel and Howell cover an example
[23, p. 370] like this with two infinite plates where the solid angle dω describes the infinitesimal
emitted radiation per unit area, which is integrated with the exchange factor in the integrand
cite[p. 728]incro07
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Figure 10: Some paths, like path B, won’t reflect back to the opposing surface.

Clearly, A1 can only exchange radiation as if the two concentric surfaces
were infinite parallel plates–regardless of specularity. In other words, none of
the energy from A1 can ever be reflected off A2 twice in succession without first
returning to A1 [23, p. 368]. But the emitted energy of fraction F2,2, on the
other hand, will consist of rays following paths like path B (Figure 10). What
is so interesting about this is that because of the specularity of the reflections,
none of this emitted energy will ever reach A1. This removes the dependence of
the size of A2 from the problem, and is what makes the specular result slightly
different. This can be seen mathematically in equation 13.

q̇2,1(A1, ε2, T2) = A2ε2F2,1σT
4
2 = A2ε2(A1/A2)σT 4

2 = A1ε2σT
4
2 (13)

An example to illustrate the effect is useful because it has implications for
superinsulation. Consider two concentric spheres as shown in 11. Assume the
outer sphere is 220K and the inner sphere is 90K. The inner sphere emissivity is
fixed at 0.02. How does the specular result compare to the diffuse result? The
equation for specular heat transfer with this geometry is given by equation 14
whereas diffuse is equation 15. Notice that the dependence on the inner sphere
area cancels out in equation 14 whereas there is no dependence on the outer
sphere area (and thus no dependence on the annulus spacing) in equation 15.

q̇12s(r, t, T1, T2, ε1, ε2) =
A1(r)σ(T 4

2 − T 4
1 )

1
ε1

+ A1(r)
A2(r,t)

(
1
ε2
− 1)

(14)

Note that if emissivity of the outer sphere equals unity in equation 14 or
15, then the equation reduces to the widely known form for large, isothermal
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Figure 11: Concentric specular sphere heat transfer example showing the boundary
conditions. The effect of different emissivities is evaluated, as well as the
effect of a changing annulus size.

surroundings.

q̇12(r, t, T1, T2, ε1, ε2) = A1(r)σε1(T 4
2 − T 4

1 ) (15)

Then the ratio of these two (equation 16) can be plotted as shown in Figure
12. These results show that the specular effect only dominates at large radii.
As previously discussed, when closely spaced, the system begins to behave more
like infinite planes, and it was already shown that both the specular and diffuse
forms of this case are identical. So another reason why thin, closely spaced layers
work for superinsulation is because it minimizes the specular effect. Of course,
what happens to the specular effect in the presence of seams is considered later
in this report.

q̇ratio(r, t, T1, T2, ε1, ε2) =
q̇12(r, t, T1, T2, ε1, ε2)

q̇12s(r, t, T1, T2, ε1, ε2)
(16)

3.7 Monte Carlo ray tracing

3.7.1 Monte Carlo ray tracing

Using Thermal Desktop and the RadCAD module, radiation conductors (radks),
view factors, or heating rates can be output for input into SINDA/FLUINT12,

12The original version, CINDA, was developed in the 1960s in a partnership between
Chrysler and NASA.
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Figure 12: These results show that the more closely spaced the two spheres are, the
less the specular effect dominates.

a finite difference solver capable of handling conjugate heat transfer. This in-
teraction is described in the user’s manual[3] in the following way:

RadCAD uses a stochastic integration technique (Monte Carlo) for
computing radks (radiation conductors), view factors, and heating
rates. Rays are emitted from each node and traced around the ge-
ometry. The rays simulate the effect of a bundle of photons. When
a ray strikes another surface, energy is decremented from the ray
and absorbed by the struck surface. The ray is then reflected or
transmitted, according to the optical properties on the surface.

An example showing thermal desktop plots of rays is shown in Figure 13.
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Figure 13: The ray is colored based on the value of its energy; red has an energy of
one and dark blue has energy equal to zero. Specks (single pixels) were
rays lost to the large, isothermal surroundings in this problem. Here, 200
rays from 10 radiation bands (equally spaced up to 500 µm), for a total
of 2000 rays, are plotted.

3.7.2 Rays per node

The basic approach to error analysis is to estimate the variance in the mean
of the sample of ray firings[3]. This variance, in conjunction with a confidence
interval, may be used to generate a percentage error number[3]. The variance
could either be estimated by maintaining both the sum of the energy absorbed
and also the sum of the square of the energy absorbed, but this requires sub-
stantial overhead in maintaining an N by N matrix of squared energy tallies[3].
A simpler approach is to consider the ray tallies as a discrete distribution (the
energy is either completely absorbed by a node or completely reflected)[3]. Ac-
cording to Cullimore, the discrete distribution usually gives a larger error esti-
mate, and since this approach is simple and conservative, it’s the method used
in Thermal Desktop and shown in equation 17.

Errorij = 1.65

√
1−Bij
NraysBij

× 100 (17)

Cullimore goes on to say the following[3, p. 494]:

If the exact error were known, then so would the exact answer. All
we can be 100% confident of is that the true answer lies between plus
and minus infinity. A more practical statement of estimated error
can be made using confidence intervals...the Bij is the fraction of
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energy that leaves node i and is absorbed by node j by all possible
reflection paths. The sum of all Bij for a node is equal to unity.
The Bij multiplied by the surface emissivity and area becomes the
standard radiation conductor input to SINDA/FLUINT. A Bij of
one half means that node j absorbed half of the energy emitted by
node i.

The error equation highlights two important facts. One is that the
error is inversely proportional to the square root of the number of
rays shot. The number of rays will need to be quadrupled to cut the
error in half. The other is that the error depends on the magnitude
of the Bij . Large Bij are the result of capturing a large number of
emitted rays, and hence the statistical sample population is much
larger than a smaller Bij , yeilding a lower variance and error esti-
mate.

A simple rule of thumb in deciding the number of rays to shoot is to
consider the average Bij in a problem. If for a particular node, the
average Bij is one half, shooting 1000 rays gives an average error of
about 5%. If you know that a particular radiation coupling is critical
to the accuracy of the thermal simulation, say a small cryogenic
surface looking at a small hot surface, then modify the error estimate
based on expected values of Bij for the critical component.

To get a feel for how the number of rays shot per node can affect the results,
an exercise was performed. Consider two 1 m2, square, parallel plates spaced 1 m
apart. The backsides of the plates are adiabatic, assume 1000 W are dissipated
in one plate, the emissivites are both 0.11, and a surroundings temperature of
100K. What is the steady state result? The solution to this problem is shown
in Figure 14 and Figure 15. Here, in the case where the plates are simply a 1
x 1 mesh, using the default of 5000 rays per node results in the wrong answer.
The number of rays had to be increased by a factor of ten to 50,000 to obtain
the correct result from Thermal Desktop. This is the inherent error in the Bij
as discussed before.

Are there other sources of error besides the inherent uncertainty in the
stochastic integration? In fact, there are. For the next validation case, res-
olution was added to the panels to make them a 10 x 10 mesh. The result was
an erroneous answer for the top plate of 100K (see Figure 16). This happened
because the Bij cutoff factor, defined as the ratio of the Bij/Fij , can erroneously
determine rays to be inconsequential, thus truncating energy that is important
to include in the solution. In other words, a radiation conductor between nodes
i and j is ignored when it is less than a certain fraction of both node’s radiative
energy balance. When a radk has both a Bij and Bji less than the Bij/Fij
cutoff factor, it is culled from the input file to speed up calculations. A good
place to start is one divided by ten times the number of nodes in the radiation
analysis group[3]. In the Thermal Desktop manual, Cullimore writes[3, p.509],

The estimated spread in Bij for nodes in the problem must also be
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considered. For example, consider the extreme case of the inside of
a sphere with equal sized nodes. In this case, all Bij between nodes
should be exactly the same (1/n, where n is the number of nodes). A
Bij of zero should be used (or less than 1/n), since all Bij are equally
important. Picking a cutoff greater than 1/n will remove all radks
(ignoring variations due to statistical error). At the other extreme,
for models whose temperatures are dominated by a few large nodes,
a higher cutoff fraction can be deployed.

A small SINDA/FLUINT run can also be performed to verify that
excessive culling has not been done. Perform a limited transient run
with both a complete radk file and one that has been filtered. If
the results do not differ significantly, perform the longer transient
simulation with the filtered set of radks.

In this case, there were 100 nodes so a cutoff factor of 0.001 seems reasonable.
However, this is the case that gave the erroneous result. Once the cutoff factor
was reduced to 0.0001, the model replicated both the analytical result and the
previously solved simple 1 x 1 plate Thermal Desktop model. The best practice
appears to be simply setting Bij/Fij cutoff factor to zero (unless the run time
is unacceptably long). Setting it to zero also gives the correct results and avoids
any problems with culling energy.

Taking a step back, note that only one side is active on each surface. This
means that the upper plate is a re-radiating surface. What if I change it’s
emissivity? According to theory, a re-radiating surface performs independent
of emissivity13[12]. Choosing an emissivity of 0.03 instead of 0.11, with 5000
rays shot, the steady state temperature of the upper plate was 250K (a little
high). When the rays shot was increased to 500,000, the average temperature of
the plate was solved at 247.8K, which is again right in line with the analytical
result. If the re-radiating panel’s emissivity was set to blackbody, this time the
average temperature of the plate was 247.2K, which is a few tenths of a degree
low. It seems that emissivity does impart a small error upon the stochastic
method used here.

These analysis beg the question: how many rays must be shot? Is it based
on the number of nodes in the model, mostly? And what about using the
progressive radiosity method instead? I can’t fully answer these questions, but
with this simple model, at least I can analyze this problem for this particular
geometry. Here, in Figure 17, the average temperature of the plate is plotted
against the number of rays shot per node.

In the next case, the same plot is shown for the 10 x 10 meshed plates (Figure
18).

Using the progressive radiosity14 method on the same 10 x 10 plate meshes,

13That happens because the surface emissivity is an internal resistance and if there’s no
heat flow from the radiosity node to the blackbody node, then the resulting steady state
temperature is not a function of emissivity.

14The progressive radiosity method only works under the gray-diffuse assumption because,
at it’s core, it replicates the standard thermal network analysis, solving equations via radiosi-
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the plot in Figure 19 was generated. In this case, there seems to be signifi-
cant variation in the result, seemingly giving less confidence in the progressive
radiosity approach in terms of computer error.

3.8 Non-gray

Non-gray effects can significantly affect the results of some radiation heat trans-
fer problems. For example, in his paper Radiant heat transfer between nongray
parallel plates of tungsten, J. Robert Branstetter shows that the gray analysis
can underpredict heat transfer by 5% to 25%, for the temperature differences
he analyzed ranging from zero to 3200 K[1].

3.8.1 Srinivasan’s paradox

J. Srinivasan observed that their dewar15 suffered roughly 60% more heat leak
when filled with liquid nitrogen than liquid hydrogen. This counterintuitive
result is explained by the wavelength and temperature dependent emissivity
having decreased faster than the temperature over this interval. Though Srini-
vasan solved the problem analytically for only silvered surfaces, several solutions
are presented here using numerical integration.

This solution begins with the Hagen-Rubens relationship, equation 18. Here,
n is the refractive index, κ is the extinction coefficient, λo > 5 µm, µo is the mag-
netic permeability, co is the speed of an electromagnetic wave in vacuum, and
re is the electrical resistivity[23, p. 123]. Note that in this equation, wavelength
is expressed in units of [µm] and resistivity in [Ω cm].

n = κ =

√
λoµoco
4πre

=

√
0.003λo
re

(18)

With the simplification n = κ, the normal emissivity may be derived from
electromagnetic theory, equation 19.

ε′n =
4n

(n+ 1)2 + κ2
=⇒ ε′λ,n(λ) =

4n

2n2 + 2n+ 1
=

2

n
− 2

n2
+

1

n3
− 1

2n5
+

1

2n6
−...

(19)
And, just like how Siegel and Howell proceed, this fraction was expanded

so a simplification could be made16. The simplification is to keep only the first
two terms, which is justified by observing that the index of refraction of metals
is generally large at the long wavelengths being considered here (λo > 5 µm).

ties. This tends to speed up calculations in problems where it’s appropriate to make the
gray-diffuse assumption.

15They describe a dewar mostly how one would expect: essentially an ideal cylindrical tank
with inner and outer vessels separated by vacuum–no structural supports or other geometry.

16Siegel and Howell say this simplification isn’t strictly necessary, but it was useful to
conveniently setup the problem following their method.
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Combining with the Hagen-Rubens relation, the Hagen-Rubens emissivity rela-
tion is derived as shown in equation 20.

ε′n(λ) =
2√

0.003

√
re
λo
− 2

0.003

re
λo

+ ... ≈ 36.5

√
re
λo
− 464

re
λo

(20)

Using the relation re ≈ re,273
T
273 , and multiplying by 1.33 to account for

hemispherical, the integral for gray parallel plates may be applied to solve the
problem, as shown in equation 21.

q(T1, T2) =

∫ 10000

5

E
λb

(λ, T1)− E
λb

(λ, T2)
1

εh(λ,T1)
+ 1

εh(λ,T2)
− 1

dλ (21)

Notice how the integration interval starts at 5 µm and ends at 10 000 µm
rather than covering the entire interval from zero to infinity. The reason is
because with the two term approximation, anything from zero to 5 µm (as men-
tioned previously) is not being accounted for. So besides diverging at small
wavelengths, this integral also diverges at very long wavelengths.

T. Echániz et al. wrote a wonderful paper called Optical properties of metals:
Infrared emissivity in the anomalous skin effect spectral region that goes into
detail on the emissivity of metals and the relationship to the anomalous skin
effect, which is reported to have a large impact on results[9]. Even though this
paper focuses on the anomalous skin effect, some of the concepts are similar,
and they say the following (note that the equation numbers here, as well as the
table and figure, refer to their paper and chart; these do not reference equations
actually in this report):

Figure1 shows theoretical spectral emissivity for the classical theory
(eq. 4) and for the anomalous skin effect with p = 1 (eq. 6) at
three temperatures. It must be noticed that the asmalous skin ef-
fect normal emissivity shows, for p = 1, a broad peak in the mid and
far-infrared spectrum. Among the metals that have an anomalous
skin effect behavior...only copper shows a clear experimental confir-
mation of an emissivity broad peak in the mid-infrared in agreement
with the theoretical prediction. In the same figure, the two series
expansion approximations (eq 9 and 10) are also plotted. The plots
confirm the range of validity of both equations. Thus, eq 9 is a bet-
ter approximation for higher tempeatures, while eq. 10 works better
for lower ones. In the same figure, the expansion series emissivity
for p = 0 is also plotted. Two facts should be outlined: on the
one hand, the strong dependence of the anomalous skin effect with
temperature; on the other, it is better to use the integral equation
because the series expansion approach only covers a fraction of the
anomalous wavelength range.

The chart this references is adapted to Figure 20 in this report.
Moving on with this restriction in mind, the solution to this problem as cal-

culated using MathCAD is shown in Figure 21. The output for the temperature
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dependent spectral emissivity is shown in Figure 22. Solutions for this prob-
lem for various metals can be found in Figures 23, 24, 25, 26, and a comparison
among the metals is shown in Figure 27. The solution shows the desired 60% dif-
ference in heat transfer between the liquid nitrogen and liquid hydrogen vessels.
It also shows that, because of drastic changes in non-gray spectral emissivity
and absorptivity, the heat flux isn’t monotonically increasing. Therefore, there
exists smaller temperature differences that can actually yield the same heat flux
as much larger temperature differences (this is shown by the horizontal line in
the figures).

3.8.2 Kauder’s finite non-gray parallel plates example

Lonny Kauder gave a nice example of a non-gray interaction and, as an exer-
cise, this result was replicated on Thermal Desktop using wavelength dependent
Monte Carlo ray tracing via their RadCAD module. First, consider two hypo-
thetical coatings, coating c and coating d, with spectral reflectance as shown in
Figure 28.

The data shown in Figure 28 only go to 200 µm. This is a problem because
the band fraction up to 200 µm at 50K is only 91.5%, therefore, integration to
beyond the data set is required, at least to 500 µm. In fact, Kauder goes to
2000 µm in his explicit solution of the plate temperature in this problem[14,
p. 16]. Assuming the backs and sides of the parallel plates are adiabatic, each
one has an area of 1 m2, the large, isothermal surroundings are at 0K, the plates
have a 0.8 m separation, and the plate with coating c has a fixed temperature
of 50K. The other plate has coating d. What is the temperature of the other
plate? Kauder solves this analytically[14, p. 16] and finds an answer of 34.43 K.

Using Thermal Desktop, the answer was solved as 33.48 K, which seems to
further validate the Thermal Desktop non-gray calculation capability17. The
solved Thermal Desktop model is shown in Figure 29.

4 Modeling superinsulation

4.1 Floating shields analytical model

The most straightforward and basic thermal model is the ideal floating shields
setup. To analyze performance, consider N radiation shields between two sur-
faces at temperatures T1 and T2, as shown in Figure 30. The assumptions here
include steady state, gray-diffuse, and one dimensional heat transfer.

The equation for this result can be easily derived [23] and the result is shown

17It was necessary to use the same integration band steps as band steps in the properties
definition (since the properties had to be input stepwise). After talking with the developers,
it seems this bug was fixed in version 6.0 of Thermal Desktop. I was running version 5.8 at
the time of this writing.
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in equation 2218.

q =
σ(T 4

1 − T 4
2 )

1/ε1 + 1/ε2 − 1 +
∑N−1
n=1 (1/εn2 + 1/ε(n+1)1 − 1) + 1/εN2 + 1/ε2 − 1

(22)

A simplified version of this equation (Figure 31) was used to solve the case for
ten layers of insulation from 220K to 90K. Since this is an analytical equation,
once the heat flux is known, it’s possible to solve for the temperature profile.
This is shown in Figure 32.

4.2 Semi-empirical models

Ever since the invention of superinsulation by Sir James Dewar [8], researchers
have made progress modeling the heat transfer processes manifesting in the
geometry of closely spaced layers of thin, highly reflecting materials, but the
problem has never been perfectly solved, as has been discussed throughout the
theory section of this report. Nevertheless, over the years, there’s been many
attempts to solve the heat transfer problem of superinsulation. To date, no
perfect generalized model exists. That’s because there’s many different ways
to configure the insulation–each way more or less difficult, analytically. The
strong interplay between radiation and conduction has foiled most attempts at
generalization. For example, the random influence of contacting spacer layers
makes a solution hard to come by. Making matters worse are the advanced
physics effects previously discussed several times.

Today, for back of the envelope calculations, engineers use several formula-
tions for modeling the heat transfer through superinsulation. One of the more
popular forms of modeling consists of semi-empirical models. By their nature,
since the energy equation is never actually solved, the temperature gradient
through the blanket cannot be derived from the semi-empirical models. Never-
theless, they can be useful to approximate the heat flow.

It seems the most popular semi-empirical model came out of a 1969 AIAA
conference publication by Cunnington and Tien[5], and they re-published this
work again[6], partly funded by NASA Glenn Research Center, which, at that
time, was known as Lewis Research Center. Some of their more comprehensive
works include Cryogenic Insulation Heat Transfer [26], Thermal performance of
multilayer insulations [4][15], and a chapter from the book edited by Jerry T.
Bevans’s, Thermophysics: Applications to Thermal Design of Spacecraft [7].

Herein, the derivation of Cunnington and Tien’s semi-empirical model is
reproduced primarily19 from Bevan’s book. The reason is two sided: not only
to marvel at the usefulness of the equation, but also explore the weaknesses in

18This equation can be further simplified if all the shields have the same emissivity, and
again even further simplified if the outer walls also have the same emissivity.

19It is useful for the interested reader to look at all of Cunnington and Tien’s publications
since each of them contains slightly different information on the progression of how to develop
this model.
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this approach. Besides, the original authors skip many steps and it was never
given an academic, clear treatment in text.

First, some assumptions must be granted, but more are added later as
needed.

1. optically thick layers (no quantum tunneling) | τ << 1

2. one dimensional heat transfer

3. isothermal layers

4. neglect gas conduction / convection

5. separable radiation and conduction terms

6. steady state

7. infinite plane geometry

8. neglect directionality of emission

9. no internal heat generation

10. diffuse-gray

11. thin film (neglect conduction through the layer)

12. no seams or other kinds of disturbances

Regarding the first assumption, some researchers, such as T. Ohmori20, A.
Yamamoto21, and M. Nakajima[19], as well as R.P. Shutt have found that thin
vapor deposited aluminumized layers, on the order of 300Å to 900Å, exhibit
some transmissivity. Tuttle found that long-wavelength radiation at low tem-
peratures can penetrate the layer through a quantum tunneling effect.

This quantum effect ought to occur when the wavelength of radiation is on
the order of the same size as the layer spacing. A typical layer spacing for
superinsulation might be ten layers per centimeter22

Cunnington and Tien approximate the heat transfer between two layers (Fig-
ure 33) by invoking the separable assumption as shown in equation 2323. The
separable assumption isn’t particularly strong because clearly conduction and
radiation are tightly coupled in this geometry. Nevertheless, this approximation
drastically simplifies the approach.

q =
k(T1 − T2)

l
+

Eb1 − Eb2
1/ε1 + 1/ε2 − 1 + 3/4τ

(23)

20Ishikawajima-Harima Heavy Industries Co. Ltd.
21High Energy Accelerator Research Organization
22Fifteen layers per centimeter is often cited, however, this depends on the spacer used.
23Usually the heat flux variable q is written with a dot above (to indicate energy per second)

and two primes to indicate that it’s a flux (per area), but here it’s just written as q to simplify
text output
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Here, the transmissivity was included for parallel plates, but this term goes
to zero because the film is assumed to be optically thick. Then the equation
can be simplified as shown in equation 24. Here, k is the thermal conductivity
of the spacer.

q =
k(T1 − T2)

l
+

ε1ε2
ε1 + ε2

(Eb1 − Eb2) (24)

According to the approach they took in the Bevans book, for n > 1, Eb1 =
n2σT 4

1 and ε = nε(T ) where n is the index of refraction (assumed to be 1
for crinkled layers and 1.14 for thin, fibrous spacers) and ε(T ) is the total,
hemispherical emissivity. With this substitution, equation 25 is obtained.

q =
k(T1 − T2)

l
+

ε1ε2
ε1 + ε2

(n3σ(T 4
1 − T 4

2 )) (25)

Now, the authors wanted to include a pressure dependency in the conduction
term so, referencing his own work A correlation for thermal contact conductance
of nominally flat surfaces[25], he uses the following relationship (equation 26) for
a single or double interface where ks is the spacer conductivity, p is the loading
areal pressure, E is the modulus of elasticity, Nc is the number of contacts (one
for embossed or crinkled insulation, and two for netting), c is the empirical
constant, and (an empirical constant) d is roughly equal to 1/2.

k ≡ Hl

Nc
≈ kscp

d

E

l

Nc
(26)

But Cunnington and Tien didn’t want to worry about ks, E, or the constant,
so they instead lumps them into another parameter cT ≈ Ksc/E. Now the
problem is how to apply this single contact semi-empirical equation to many
contacts. So they assume that the following relationship holds (equation 27)
where N is the number of one shield one spacer segments and l is the spacer
thickness.

k ≡ cT p
dl

N
(27)

Then the equation reduces to the form shown in equation 28.

q =
cT p

dl

N

(T1 − T2)

l
+

ε1ε2
ε1 + ε2

n3σ(T 4
1 − T 4

2 ) (28)

Now, they assume double sided, thin insulation such that ε1(T ) = ε2(T ) and
now they invoke a particularly weak assumption. They assume the interlayer
change in temperature is small and justifies this by assuming many shields. The
intention is to set up the model essentially for a continuum assumption such that
xtot = Noh and letting x→ 0 the result reduces to the form shown in equation
29.

q =
cT p

dl

N

∆T

l
+
ε(T )

2
(n3σl)

∆T 4

l
(29)
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By analogy of the continuum, Cunnington and Tien argues that, in the limit
of the continuum, ∆T → dT and l → dx, and now the ordinary differential
equation is apparent (equation 30).

q =
cT p

dl

N

dT

dx
+
ε(T )

2
(n3σl)

d(T 4)

dx
(30)

Then, assuming β ≡ T 4, the chain rule implies that d(T 4)/dx = 4T 3dT/dx.
At this point, the heat transfer relation is shown in equation 31.

q =
cT p

dl

N

dT

dx
+ 2ε(T )n3σlT 3 dT

dx
(31)

We’ve made progress with some ambitious assumptions by reducing this
problem to a continuous, one dimensional model that is essentially in a form
analogous with Fourier’s law. It can be thought of as a hybrid separated mode
and radiation diffusion model. At this point, Cunnington and Tien admit
that they still don’t like the form of their contact conductance law, there-
fore, they modify it again so that they may proceed in the solution such that
cT ≡ ksc/E = cks(T )/E(T ) ≡ b1T

α1 . They also assume that the total, hemi-
spherical emissivity is appropriate and follows a form of ε(T ) = b2T

α2 . Here,
b1, b2, α1, and α2 are constants. The authors write,

Total, hemispherical emittance as a function of temperature for alu-
minum surfaces...excellent agreement is found with the form ε =
b2T

2/3 over the major portion of temperature useful to cryogenics[7,
p.118].

Cunnington and Tien report that for 400Å to 500Å aluminum on mylar,
the total, hemispherical emittances as ε = (6.45x10−4K−2/3)T 2/3, whereas for
aluminum foil, they report ε = (6.05x10−4K−2/3)T 2/3. For a comparison, the
Spacecraft thermal control handbook reports ε = (4.40x10−4R−2/3)T 2/3 and
ε = (3.88x10−4R−2/3)T 2/3–taking the mean and converting to Kelvin, the result
is 6.1x10−4K−2/3 which is right in line with Cunnington and Tien’s original
measurements24. So now we have equation 32.

q =

(
b1T

α1pdl

N
+ 2b2T

α2n3σlT 3

)
dT

dx
(32)

Strictly by analogy, we assume this behaves like the one-dimensional Fourier
law q = krad+cond(T, P,N)dt/dx. It’s useful to review where this comes from:
d/dx(k(T )dT/dx) = 0 such that with the product rule,

dk

dx

dT

dx
+ k(T )

d2T

dx2
(33)

24For the curious reader who has seen the final equation before, note that this is where the
4.67 exponent comes from. Also, note that there is more development that makes finding b1
irrelevant, besides that, α1 ≡ 1 to a first approximation.
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So in order to reduce this to the aforementioned form, one must assume the
combined thermal conductivity is constant such that dk/dx = 0. This leaves
k(T, P,N)d2T/dx2 = 0.

Now, obviously, the thermal conductivity is strongly temperature dependent
in the cryogenic regime. Nevertheless, in order to proceed with this ordinary
differential equation solution, this assumption must be made. The result is
an equation that is linear being used to describe a non-linear scenario. This
failure is ultimately why the Cunnington and Tien model only has correlative
use as opposed to full predictive potential for insulations that have yet to be
constructed. Because this equation is only good after having been correlated in
a test. So, after integration from 0 to Noh, which is approximately zero to the
thickness of the blanket, equation 34 results.

q =
b1p

dl

NNoh

Tα1+1
h − Tα1+1

c

α1 + 1
+ 2b2n

3σl
Tα1+4
h − Tα1+4

c

α2 + 4
(34)

At this point, Cunnington and Tien lament that b1 and α1 are hard to
evaluate. So as a first approximation we assume α1 = 1 and b1 = constant
and because the layers are thin, it is assumed l = h, and if c′ ≡ b1/No and
Tm ≡ (Th + Tc)/2, then equation 35 is obtained.

q =
c′pdTm
N

(Th − Tc) +
3

7

b2n
3σ

No
(T

14/3
h − T 14/3

c ) (35)

Again, at this point, Cunnington and Tien ran into a problem. In their data,
they had trouble correlating this equation so it could predict the heat flux for
different pressures. So, instead, they fit to layer density. This probably caused
confusion because, for Cunnington and Tien, layer density arose due to pressure
effects. It is not a controlled parameter, as it were. Yet, later, engineers tried
to use this expression to find an optimal layer density, but this is equivalent to
trying to find an optimal loading pressure on the insulation. Next, how they
develop the equation in terms of layer density is shown.

Assuming N = (p/a)1/n where N = No/t is the layer density and a and n
are constants and t is the blanket thickness. Then, examine this subsitution:

c′pdTm
N

(Th − Tc) =
c′(aN

n
)dTm

N
(Th − Tc) (36)

And assuming the number of shields equals the number of layer space seg-
ments such that N = No and defining m ≡ nd− 1 and c′′ ≡ c′ad then

=
c′′N

m

t
Tm(Th − Tc) (37)

The final equation reported by Cunnington and Tien is thus equation 38.
They fit this equation to test data by adjusting c′′, m, and b2. To do this, they
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write that they first subtract the radiative flux and then plot the difference
times thickness as a function of layer density.

q =
c′′

t
N
m
Tm(Th − Tc) +

3

7

b2n
3σ

No
(T

14/3
h − T 14/3

c ) (38)

4.2.1 Krishnaprakas’s comparison

Previously, the Cunnington and Tien model was discussed. It uses no fewer
than twenty two assumptions. It’s telling that in C.K. Krishnapraka’s work,
Heat transfer correlations for multilayer insulation systems, they show that a
model of form,

q = h(Th − Tc) + ε′effσ(T 4
h − T 4

c ) (39)

is at least as accurate as the Cunnington-Tien form,

q = c1(T 2
h − T 2

c ) + c2(T 4
h .67− T 4

c .67) (40)

And in Keller and Cunnington’s Thermal performance of multilayer insula-
tions, the author writes that an equation of the form,

q = c3(T 2
h − T 2

c ) + c4(T 3
h − T 3

c ) + c5(T 4
h .67− T 4

c .67) (41)

is more accurate than a form without the T 3 term[16, p.4-24]. So it seems
that this kind of polynomial fit simply tends to work well, and, perhaps, to use
such an equation, the previously mentioned complex derivation is not necessary.
Nevertheless, this is not a criticism of Cunnington and Tien’s work. Without
their massive contributions to this field, much less would be known about heat
transfer through superinsulations. After all, to suggest this was their only con-
tribution would be a great oversimplification of the body of their work.

4.2.2 Iterative separated mode model

Another notable model includes the separated mode interative model, discussed
by McIntosh[18]. This formulation works by assuming a temperature profile and
then adjusting it until the heat transfer between each layer converges. A block
diagram of how this program works is shown in Figure 34.

4.2.3 Seams and cracks in superinsulation

There seems to be a lack of research in this area, which motivated this study.
There are three notable research papers on this topic.

The first notable study was the work done at the Jet Propulsion Labora-
tory for the Cassini program. Here, twenty layer test blankets with dacron net
separators were instrumented to measure temperature drops through the blan-
ket at various locations. The results showed that the radiative heat loss from
the room-tempearture test article to the LN2 cooled chamber wall varied by an
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order of magnitude, from less than 3W/m2 to almost 30W/m2, depending on
distance from the seam[11][17]. These results are shown in Figure 35.

The other two notable papers were by the same author, Q.S. Shu at the
Fermi National Accelerator Laboratory. Here, an analytical enhanced black
cavity model was developed to explain the unexpectedly large heat flux through
a crack (or slot) in multilayer insulation. Shu reported an increase in heat load
due to unit crack area above a hundred times the heat flux of a blanket without
cracks. The setup and solution are shown in Figures 36 and 37, respectively.

In the conclusion, Shu wrote[22],

1. a crack in a MLI blanket will cause a significant increase in the
heat flux. The mean equivalent thermal conductivity of a narrow
crack is 3-8 W/m/K. The increase in heat flux due to unit crack
area is a function of the aspect ratio of the crack with a maximum
of 149 W/m/m.

2. the use of aluminized mylar patches to cover the crack at each
layer is good but may not be easy to install, however, the use of
flat patches on a few layers will give almost the same improvement
as patches between each layer. Placing the patches in the outer
(warmer) half of the blanket is much better than in the inner (colder)
half. Putting patches on the outside of the crack is not very effective;

3. Mylar with more aluminizing is better as a patch material...

4. reducing the emissivity of the cold surface under a narrow crack
does not significantly effect the heat flux

5. the presence of cracks and patches changes the temperature dis-
tribution in the blanket near the cracks. The layer closest to the cold
surface increased and that of the layer closest to the warm surfaces
deceased as the width of the slots increased...

6. the local equivalent thermal conductivity of a crack is a sensitive
function of the distribution and number of patches along the crack

7. the experimetnal results are generally in agreement with the
enhanced black cavity model

To date, no one has attempted to verify these results with their own exper-
iment, which is unfortunate. Since a spherical geometry was of interest in this
particular thesis, Shu’s work is not validated here either.

4.2.4 Other models

There are numerous models reported in the literature–too many to comment on
here. One of the best summaries of this information is in Multilayer insulation:
a state of the art assessment [2] by Richard W. Cartwright25, so the curious
reader with access ought to check out this resource.

25This document is available by request only through the Chemical Propulsion Informa-
tion Analysis Center at the Johns Hopkins University, Whiting School of Engineering and
reproduction is not authorized.
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4.2.5 Other topics

There are many other topics left unexplored, including all of the intricacies and
peculiarities associated with meeting requirements and physical construction.
The interested reader is encouraged to explore the Spacecraft thermal control
handbook for more information on these topics.

5 Material Properties

It was important to pick an optical property that refers to an optically thick
layer. Also, the gray assumption must be deployed because the data for tem-
perature dependent spectral emissivity was not readily available at the time of
this analysis.

The optical property chosen for the insulation then was that of aluminized
kapton of 1 mil thickness (beginning of life26)[11]. The reported value for the
infrared emissivity is 0.61, which seems a little large, but it’s in the range of the
other aluminized films. Lower values can be approached (such as with aluminum
tape), but these materials aren’t typically used for insulation layers.

Regarding physics properties, for the layers of insulation, polyimide (kapton)
was chosen[11].

6 Geometry

A spherical geometry has two advantages, the biggest being the elimination of
edge effects, the other being that often cryogenic tanks take the shape of a
sphere. The area was set to 1m2 (primarily so that heat flux was numerically
equivalent to the total heat transferred through each submodel)27.

A = 1m2 (42)

r =
√

1m2/4π ≈ 0.282m (43)

Layer thickness was assumed to be 2.5x10−5m and ten layers of insulation
were consistently used throughout the solutions reported herein. Layer spacing
was 1mm. Lateral conduction and conduction through the thickness of the
layers are solved as part of the SINDA finite difference solution.

26Insulations exposed to different environments suffer changes in their optical properties.
Due to time constraints, these effects are not explored in this paper. Other unexplored topics
include gas conduction, as well as lateral conduction, and the way insulation responds to
penetrations such as piping, or perforations to allow for venting. Superinsulation is a deep,
complex subject, and probably deserves a textbook of its own.

27Each layer was given it’s own submodel to simplify the SUBMAP function which tracks
heat moving from one submodel to another.
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7 Boundary conditions

This is a simple approach. There are two Dirichlet conditions, one for the
innermost surface and one for the outermost surface. These temperatures were
fixed at 90 K and 220 K. After validation cases are performed, the surroundings
are brought closer to the outer layer, and various seam sizes are explored, as
well as the effect of an increasing contact conductance for this specific geometry
(ten layer, spherical blanket).

8 Validation Cases

The algorithm utilized for heat transfer calculations by radiation is Monte Carlo
ray tracing. As previously discussed, this is called the RadCAD plug-in, by the
developers of Thermal Desktop, C & R Technologies [3].

8.1 Optimizing rays per node and Bij/Fij cutoff factor

The first few cases ran were to decide what a good number of rays were, as well
as the impact of the cutoff factor. This particular case was using perfectly black
surfaces on the inner and outer boundaries, the outer boundary being large,
isothermal surroundings28. For all cases, the inner temperature is 90K and the
outer temperature 220K. The results are shown in Figure 38. Here, each layer
used a 10 x 10 mesh. It seems that for this geometry, at least 100,000 rays
are necessary with a cutoff factor of zero. Because the workstation processing
these results is powerful29, the number of rays for future cases will actually be
1,000,000.

8.2 Comparison to floating shields ideal solution

Next, to validate Thermal Desktop, a similar case was solved. This time, the
outer boundary was brought very close–to the spacing of the insulation layers–
and the inner and outer boundary emissivities were set to match the layer emis-
sivities at 0.61, as previously discussed. The comparison between the two so-
lutions is shown in Figure 39. The agreement is satisfactory. It seems slight
deviations from perfection result from the random and numerical nature of the
Monte Carlo solution. The total heat flux was −5.34W/m230, which compares
to −5.15W/m2 in the analytical solution. The relative error, shown in equa-
tion 44, is acceptable for the purposes of this study. With confidence, more
interesting cases can now be solved.

28Note that here the area was accidentally set to 4m2, resulting in the increased heat leak on
the order of 22W . This should not impact the number of rays shot, since that is a symmetrical
effect.

29This machine has an eight core Intel Xeon CPU E5-1630 v4 at 3.70GHz with 32 GB
DRAM an NVIDIA Quadro M5000 graphics card

30The negative sign simply results from taking the result from the sink node, which is the
cold boundary node
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Err =
5.34− 5.15

5.15
100 ≈ 3.7% (44)

8.3 Case 1: Floating shields, 3◦ crack, large isothermal
surroundings, gray-diffuse

This time, the geometry was modified to create a 3◦ crack in one half of the
insulation. The nodalization was adjusted such that more nodes were located
closer to the crack–something that remains consistent in the rest of the analysis.
The solved heat flux was −6.04W/m2 which represents roughly a 13% increase
in total heat flux from the case with no crack. This is quite large, given the fact
that we’re only considering a 3◦ opening over half of the sphere. The solved
temperature profile and results are shown in Figures 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50.

8.4 Case 2: Floating shields, 3◦ crack, large isothermal
surroundings, gray with directional emission

In this case, the effect of directional emission31[14] bouncing out of the seam
are explored. This is the great advantage of Thermal Desktop–cases like this,
which are incredibly difficult analytically, can be solved with just a few more
clicks. In this case, reflections are assumed to be diffuse.

The result was a total heat flux of −6.13W/m2, which is just 1.5% greater
than the case without directional emission. This is within the uncertainty of
the Monte Carlo approach and the results are very similar to case 1, so they
are not reported herein32. It seems directional emission may be safely ignored
in cryogenic insulation in this temperature regime.

8.5 Case 3: Floating shields, 3◦ crack, large isothermal
surroundings, gray with directional emission and spec-
ular (mirrorlike) reflections

This time specular, mirrorlike reflections are added to the analysis. This only
increased the heat leak to −6.17W/m2, which is small enough to be safely
ignored. It seems the specular effects may be disregarded for cracks in insulation.

8.6 Case 4: Floating shields, 6◦ crack, large isothermal
surroundings, gray-diffuse

In this case, the solved heat leak was −6.70W/m2. This is a 25% increase from
the ideal case without a crack. The solved temperature profile and results are
shown in Figures 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61.

31Here, the same directional emissivity curve is used for general metallic surfaces as pub-
lished by Kauder and discussed earlier in this report.

32The goal is literally to save paper on printouts, nothing interesting is revealed by this case
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8.7 Case 5: Floating shields, 12◦ crack, large isothermal
surroundings, gray-diffuse

In this case, the solved heat leak was −7.95W/m2. This is a 49% increase from
the ideal case without a crack. The solved temperature profile and results are
shown in Figures 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72.

8.8 Case 6: Floating shields, 3◦ crack, surroundings brought
very close, gray-diffuse

In case 6, the surroundings were brought within 1 mm of the outermost layer
with an emissivity equivalent to the rest of the emissivities in the system: 0.61.
The resulting heat leak was −5.78W/m2 which is relatively close to the ideal,
floathing shields with no cracks case. The temperature profile is shown in Figure
73.

8.9 Case 7: Contacting shields, 3◦ crack, large, isothermal
surroundings, gray-diffuse

In case 7, a contact conductance of 0.05W/m2/K was applied between each
layer of insulation33. This case is a bit more realistic. The resulting heat leak
was −6.66W/m2 and the temperature profile is shown in Figure 74, and the
graphical results are shown in Figures 75, 76, 77, 78, 79, 80, 81, 82, 83, 84.

8.10 Case 8: Contacting shields, stronger contact, 3◦ crack,
large, isothermal surroundings, gray-diffuse

This time, the effect of increasing the contacting conductance by an order of
magnitude to 0.5W/m2/K is considered. The heat leak was drastically increased
to −11.97W/m2. This shows the powerful impact of contact conductance as
layers are more forcefully pressed together. Also, temperature gradients become
more shallow as the dominance of the effect of the crack on the heat leak is
dwarfed by the effect of the contact conductance. The temperature profile is
shown in Figure 85, and the graphical results shown in Figures 86, 87, 88, 89,
90, 91, 92, 93, 94, 95.

8.11 Non-gray case

How does a gray blanket compare to a blanket with the non-gray assumption?
To find out, a ten layer blanket case was created for a cylindrical geometry. The
temperatures ranged from 20 K on the cold side to 220 K on the hot side. The
gray case assumed an emissivity of 0.03, which, according to the Hagen-Rubens
two term approximation, is the room temperature value of aluminum at roughly
infrared wavelengths. This resulted in the temperature profiles and plot shown

33Because I’m not entirely sure what contact conductance is reasonable, another case is
solved for a contact conductance ten times greater in case 8.
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in Figure 96. Here, the gray case performs worse because the emissivity tends
to fall with decreasing temperature, which isn’t accounted for in the gray case.
It turns out in this case that the ratio of heat leak works out to be a factor of
0.586, which means assuming gray is a bit conservative from the perspective of
radiation heat transfer.

9 Discussion

The floating shields case suffered a heat leak of −5.34W/m2, compared to
−6.04W/m2 in the case with a 3◦ crack, −6.7W/m2 in the case with a 6◦

crack, and −7.95W/m2 in the case with a 12◦ crack. Directional emissivity
and specular, mirrorlike reflections may be ignored. Contact conductance was
shown to have a significant effect on the solution.

The average heat flux due to the seam appears to decrease with increasing
aspect ratio, as shown in Figure 97. To explain this, it’s hypothesized that the
smaller aspect ratios behave more nearly to a blackbody cavity.

In addition, patches were found to be a very effective means of reducing the
increased heat leak due to the seams.
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Figure 14: A radiation network and the radiosity method is used to solve this basic
heat transfer problem.
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Figure 15: This figure shows the result of the solution from this problem, as well as
the associated Thermal Desktop results.
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Figure 16: In this case, the Bij cutoff factor was set too low for the number of
nodes and rays being shot, therefore, many of the rays (having failed the
Bij/Fij) were neglected from the resultant, leading to a lower predicted
temperature.

Figure 17: Variation in the plate node average temperature settles, in this case,
once 300,000 rays per node are shot (1 x 1 plate mesh case). There is an
interesting jump near 100,000 rays per node that is hard to explain.
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Figure 18: Variation in the plate node average temperature settles, in this case, once
100,000 rays per node are shot (10 x 10 plate mesh case).

Figure 19: Variation in the plate node average temperature settles, in this case,
once 100,000 rays per node are shot (10 x 10 plate mesh case using the
progressive radiosity method, as opposed to the Monte Carlo method
used in all other cases).
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Figure 20: Figure by T. Echániz et al. [9].
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Figure 21: Solution to the nongray dewar problem following the approach of Srini-
vasan [24] which keeps a two term approximation of the Hagen-Rubens
relation.
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Figure 22: Predicted temperature dependent spectral emissivities as calculated with
the two term Hagen-Rubens approximation.
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Figure 23: Solution to Srinivasan’s problem for a dewar with both surfaces coated
with silver.
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Figure 24: Solution to Srinivasan’s problem for a dewar with both surfaces coated
with aluminum.
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Figure 25: Solution to Srinivasan’s problem for a dewar with both surfaces coated
with copper.
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Figure 26: Solution to Srinivasan’s problem for a dewar with both surfaces coated
with platinum.
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Figure 27: The comparison shows that platinum performs relatively poorly compared
to silver and copper. Gold and aluminum seem to perform slightly worse
according to the two term Hagen-Rubens non-gray approximation.

Figure 28: Kauder gave spectral plots for the two hypothetical coatings used in his
example, note that the units are micrometer on the x-axis. Note that
when trying to match these results in Thermal Desktop, it was necessary
to assume this chart shows the spectral emissivity as opposed to the
spectral reflectance. It seems the figure was mislabeled.
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Figure 29: The solution to Kauder’s example as performed using Thermal Desktop.
Kauder reveals the analytical solution to two finite non-gray square plates
in his analysis[14].

Figure 30: Radiation shields between concentric cylinders or spheres [23].
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Figure 31: The basic ideal shields solution. The histogram shows how much the total
heat leak is reduced by adding additional layers.

Figure 32: The solved temperature profile for the ideal, floating shields case with ten
layers.
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Figure 33: Schematic showing the starting point of the Cunnington and Tien
analysis–simply two layers of insulation and their properties. Note that
the temperature is assumed to exist but isn’t known or prescribed.

Figure 34: A block diagram for a iterative separated mode superinsulation model.
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Figure 35: Results of the Cassini program study on multilayer blanket
performance[17].

Figure 36: Schematic of the geometry Shu analyzed in his 1987 study[21].

56



Figure 37: Results from Shu’s 1987 study[21].
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Figure 38: It seems a minimum of 100,000 rays with a cutoff factor of zero is accept-
able for this particular geometry (case six).

Figure 39: The Thermal Desktop solution for this test case of floating shields has
satisfactory agreement.
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Figure 40: Temperature profile with maximum and minimum temperature nodes
being shown for case 1.
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Figure 41: Case 1, layer 1.

Figure 42: Case 1, layer 2.
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Figure 43: Case 1, layer 3.

Figure 44: Case 1, layer 4.
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Figure 45: Case 1, layer 5.

Figure 46: Case 1, layer 6.
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Figure 47: Case 1, layer 7.

Figure 48: Case 1, layer 8.
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Figure 49: Case 1, layer 9.

Figure 50: Case 1, layer 10.
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Figure 51: Temperature profile with maximum and minimum temperature nodes
being shown for case 4.
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Figure 52: Case 4, layer 1.

Figure 53: Case 4, layer 2.
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Figure 54: Case 4, layer 3.

Figure 55: Case 4, layer 4.
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Figure 56: Case 4, layer 5.

Figure 57: Case 4, layer 6.
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Figure 58: Case 4, layer 7.

Figure 59: Case 4, layer 8.
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Figure 60: Case 4, layer 9.

Figure 61: Case 4, layer 10.
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Figure 62: Temperature profile with maximum and minimum temperature nodes
being shown for case 5.
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Figure 63: Case 5, layer 1.

Figure 64: Case 5, layer 2.
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Figure 65: Case 5, layer 3.

Figure 66: Case 5, layer 4.
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Figure 67: Case 5, layer 5.

Figure 68: Case 5, layer 6.
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Figure 69: Case 5, layer 7.

Figure 70: Case 5, layer 8.
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Figure 71: Case 5, layer 9.

Figure 72: Case 5, layer 10.
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Figure 73: Temperature profile with maximum and minimum temperature nodes
being shown for case 6.
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Figure 74: Temperature profile with maximum and minimum temperature nodes
being shown for case 7.
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Figure 75: Case 7, layer 1.

Figure 76: Case 7, layer 2.
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Figure 77: Case 7, layer 3.

Figure 78: Case 7, layer 4.
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Figure 79: Case 7, layer 5.

Figure 80: Case 7, layer 6.
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Figure 81: Case 7, layer 7.

Figure 82: Case 7, layer 8.
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Figure 83: Case 7, layer 9.

Figure 84: Case 7, layer 10.
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Figure 85: Temperature profile with maximum and minimum temperature node0.s
being shown for case 7.
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Figure 86: Case 8, layer 1.

Figure 87: Case 8, layer 2.
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Figure 88: Case 8, layer 3.

Figure 89: Case 8, layer 4.
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Figure 90: Case 8, layer 5.

Figure 91: Case 8, layer 6.
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Figure 92: Case 8, layer 7.

Figure 93: Case 8, layer 8.
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Figure 94: Case 8, layer 9.

Figure 95: Case 8, layer 10.
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Figure 96: Cylinder gray vs non-gray

Figure 97: Cylinder gray vs non-gray
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