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Background

• Gemini, Apollo, and Space Shuttle used fuel cells as 

main power source for vehicle and water source for life 

support and thermal

– PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used

– Ideal for short (less than 3 weeks) missions when the required 

O2 and H2 can be launched with the vehicle

• New missions that might require long-duration stays in 

orbit or at a habitat, can not rely on the availability of 

pure reactants but should also aim to be sun-

independent – a problem for which Solid Oxide Fuel 

Cells integrated with a Steam Methane Reformer (SMR) 

might be the answer
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Background

• NASA has investigated & developed LOX/CH4-propelled landers 

(Altair, Morpheus) to consider fuel cells as a power source to 

preserve mission flexibility

• Previous work at JSC has the volumetric and mass benefits of 

LOX/CH4 propelled vehicles vs LH2/LO2

• Using a SMR, steam reformation of methane into a H2-rich mixture 

is being considered for more efficient fuel cell performance. 
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Motivation

• To obtain reliable and efficient operation of 

SMRs to ensure consistent pressure and 

temperature under different operating 

conditions.

• Artificial neural networks (ANN) modeling 

approach can:

– handle complex and nonlinear characteristics of input 

and output variables including pressure and 

temperature

– converge to a solution quickly with very low error

– account for dynamic behavior
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Objective

• Compare and assess the dynamic models 

for best fit under given operating 

conditions

– SMR Temperature model

– SMR Pressure model 

• Dynamic ANN with Levenberg-Marquardt 

(LM) algorithm have two different 

structures: 
– Conventional time delay (TD) only structure

– Time delay with Nonlinear Autoregressive Network 

with External Input (NARX) structure
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Experimental setup
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Variables Units Operating range

Methane input temperature
oC ( oF) 500-800 (932-1472)

Water input temperature
oC( oF) 500-800 (932-1472)

Methane input pressure psig 4-6

Water input pressure psig 9-10

Methane input flow rate SLPM 4-6

Water input flow rate SLPM 13-18

SMR (Output) temperature
oC( oF) 500-800 (932-1472)

SMR (Output) pressure psig 4-6



Experimental setup
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Methane and 

Water Inputs

SMR Output



Example Experimental Result
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ANN modeling approach

• Dynamic Fitting ANN with LM algorithm and TD structure
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Reference: Mathworks Inc.



ANN modeling approach

• Dynamic Fitting ANN with LM algorithm and TD structure
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Change # of 

Hidden neurons

Inputs Output



ANN modeling approach

• Dynamic Fitting ANN with LM algorithm and TD & NARX 

structure
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Reference: Mathworks Inc.



ANN modeling approach

• Dynamic Fitting ANN with LM algorithm and TD & NARX 

structure
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Reference: Mathworks Inc.
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Hidden neurons



Statistical Analysis
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MSE =
1

𝑛
 𝑍− 𝑌 2

• Y – experimental data

• Z – model results

• n – number of data points

• ത𝑌 – mean experimental value

• SSE – sum of squared error

𝑅2 = 𝐶𝑜𝑟 𝑍, Y 2

= 1 −
SSE

σ 𝑌 − ത𝑌 2

• Mean Squared Error - closeness of fit (converge to 0)

• Coefficient of Determination – strength of fit (closer to 1)
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Results – Dynamic Fitting LM w/ TD

SMR Temperature Model

# of Hidden Neurons R2 MSE

1 0.98953 462.54

5 0.9948 230.91

10 0.99705 130.82

15 0.99771 101.67

20 0.99827 76.698

25 0.9995 22.064

30 0.99829 75.666
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Results – Dynamic Fitting LM w/ NARX

# of Hidden Neurons R2 MSE

1 0.99999 0.37352

5 0.99999 0.31826

10 1 0.19429

15 1 0.14639

20 1 0.13704

25 1 0.15315

30 1 0.13319

SMR Temperature Model
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Results – Dynamic Fitting LM w/ TD

# of Hidden Neurons R2 MSE

1 0.98433 0.086254

5 0.98985 0.056055

10 0.99236 0.042222

15 0.99199 0.044358

20 0.99343 0.036356

25 0.99387 0.033975

30 0.99404 0.033034

SMR Pressure Model
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Results – Dynamic ANN LM w/ NARX

# of Hidden Neurons R2 MSE

1 0.98715 0.070845

5 0.99181 0.045267

10 0.99337 0.036865

15 0.99225 0.042823

20 0.994 0.033211

30 0.99195 0.044516

SMR Pressure model



Conclusions

• Most models showed very good fit to the 

experimental data for 1-30 hidden neurons.

– All ANN NARX Temperature models had R2 > 0.99 

and MSE < 0.4

– All Pressure models had R2 > 0.98 and MSE <  0.09

• ANN model using LM algorithm with NARX 

structure showed the best fit for both SMR 

temperature and pressure

• Almost any of these modeling approaches can 

be applied in predicting thermal and pressure 

behavior of SMR

– to improve thermal efficiency 

– stabilize the dynamic operation.
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