TFAWS Interdisciplinary Paper Session

Proof of Concept Design and Analysis of Heat Reutilization of a Solid Oxide Electrolyzer Cell for Oxygen Supply

Samuel Ogletree, M.A. Rafe Biswas

Presented By Samuel Ogletree

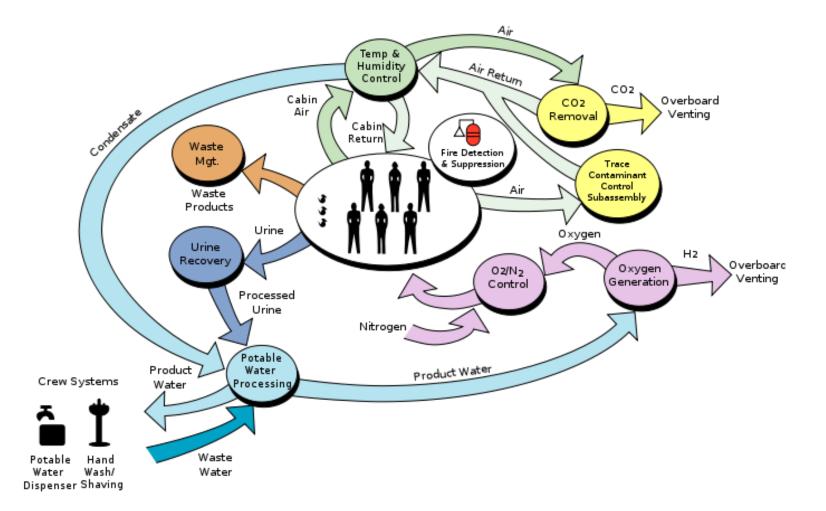
ANALYSIS WORKSHOP

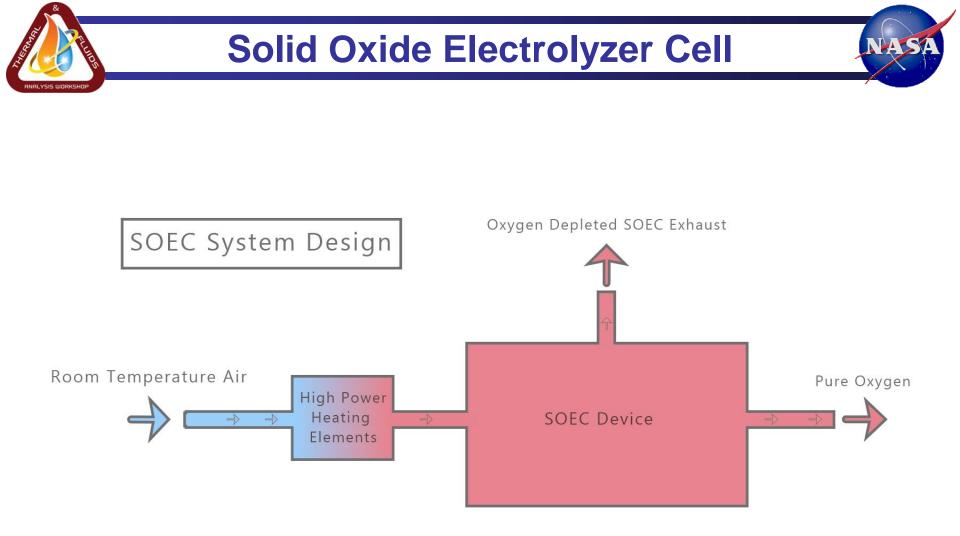
&

HERNASI

JSC • 2018

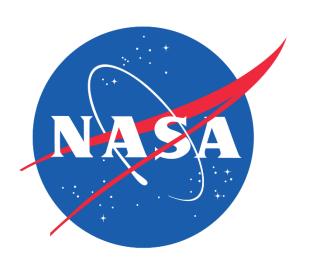
Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX

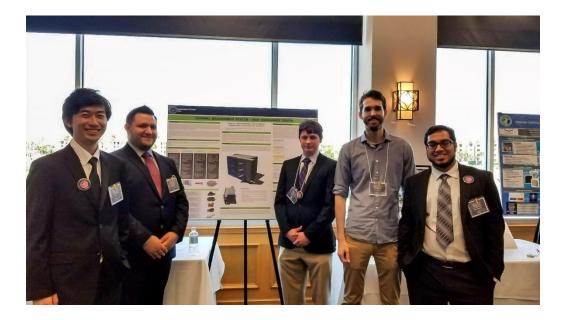


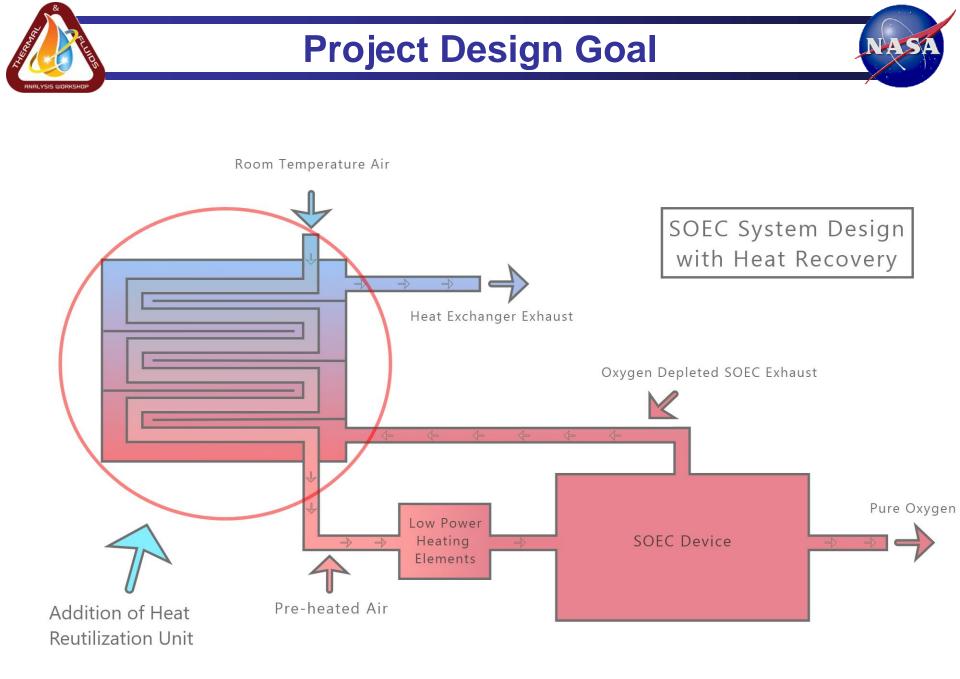

Innovation

Current Oxygen Production Systems

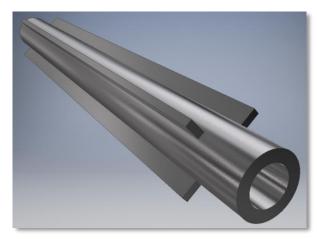
- Reliable large scale thermal management capabilities
 - High Temperature Operation
 - Minimize Power Consumption
- Scale in-situ oxygen production to more than 10 kg/day




Student Partnership



Heat Exchanger Design Pugh Chart						
Desired Properties	Double-Pipe	Plate	Cross-Flow	Shell and Tube		
Pressure Drop	0	-	0	0		
HX size	-	+	+	0		
HT surface Area	0	+	+	+		
Cost	+	-	-	0		
Simplicity of Design	+	0	0	0		
Ease of Manufacturing	+	-	-	0		
Durability	0	+	0	0		
Maintenance	+	0	0	0		
Availability of Parts	+	-	-	+		
Effectiveness	-	+	-	+		
Design Flexibility	-	+	+	+		
Total	2	1	-1	4		
Rank	2	3	4	1		



Final Design

Shell		Tube	
Temperatures [°C]		Temperatures [°C]	
Inlet (t_1) :	23.7	Inlet (T_1) :	559.1
Outlet (t_2) :	206.8	Outlet (T_2) :	88.7
Differential (ΔT_s):	183.1	Differential (ΔT_t) :	470.4
Mass Flow Rate $[^{kg}/_{s}]$		Mass Flow Rate $[^{kg}/_{s}]$	
2.99×10^{-4}		1.95×10^{-4}	

NASA

Analysis of Heat Exchanger:

- Reynolds Number
- Convective and Conductive Coefficients
- Overall Heat Transfer Coefficient
- Heat Duty
- Effectiveness
- Required Heater Power

NAS

Assumptions and Properties

- Steady-State Mass Flows
- Fully Developed Flows
- Constant Fluid Properties on shell and tube sides
- Flows Along respective Streamlines
- Well-insulated heat exchanger mass flows
- Constant heat flux along heat exchanger
- No external work
- Hot fluid in the tubes
- Counter current flow configuration

Fluid Properties				
<u>Symbol</u>	Property	Shell Fluid @ 115 °C	<u>Tube Fluid @ 324 °C</u>	
ρ	Density	$0.899 \frac{kg}{m^3}$	$0.586 \frac{kg}{m^3}$	
c _p	Specific Heat	1.01 $kJ/kg \cdot K$	1.05 $^{kJ}/_{kg \cdot K}$	
ν	Kinematic Viscosity	$25.1 \times 10^{-6} m^2/_S$	$52.4 \times 10^{-6} m^2/s$	
k	Thermal Conductivity	$0.0324 \ ^{W}/_{m \cdot K}$	0.0455 ^W / _{m·K}	

Reynolds Number:

$$Re = \frac{VD}{v}$$

Where:

- Re is the Reynolds Number
- V is the average fluid velocity
- D is the flow section effective diameter
- v is the kinematic viscosity

Result:

Shell Flow:198.0[laminar flow]Tube Flow:127.6[laminar flow]

Convective Coefficient:

 $N_u k_f$

Where:

- h is the convective coefficient
- N_u is the Nusselt Number
- k_f is the fluid thermal conductivity
- D is the flow section diameter

Result:

Shell Convective Coefficient (h_o) : 1.82 ${}^{W}/{}_{m^2 \cdot K}$ Tube Convective Coefficient (h_i) : 12.5 ${}^{W}/{}_{m^2 \cdot K}$

Conductive Coefficient:

$$h_t = \frac{k_t}{L \cdot \ln(r_2/r_1)}$$

Where:

- h_t is the conductive coefficient
- r_1 is the tube's inner diameter
- r_2 is the tube's outer diameter
- k_t is the tube thermal conductivity
- *L* is the tube length

Result:

$$h_t = 63.9 \ ^{W}/_{m^2 \cdot K}$$

Overall Heat Exchanger Coefficient:

$$\left(\frac{1}{UA_{o}} = \frac{1}{h_{i}A_{i}} + \frac{1}{h_{t}A_{o}} + \frac{1}{h_{o}A_{o}}\right)$$

Where:

- U is the overall heat transfer coefficient
- A_i is the tubes inner surface area
- A_o is the tubes outer surface area

Result:

Overall Heat Transfer Coefficient: 1.48 $W/_{m^2 \cdot K}$

$$Q = UAT_{LMTD}$$

Where:

- Q is the heat duty
- A is the heat transfer surface area
- T_{LMTD} is the log mean temperature difference

Result:

Heat Duty: 70.7W

HX Effectiveness:

$$\varepsilon = \frac{t_2 - t_1}{T_1 - t_1}$$

Where:

- ε is effectiveness
- t_1 is shell inlet temperature
- t_2 is shell outlet temperature
- T_1 is tube inlet temperature

Result:

Effectiveness: 0.342

$$\left[E = \dot{m}c_p \Delta T\right]$$

Where:

- E is the required power
- \dot{m} is the mass flow rate
- c_p is initial temperature heat capacity
- ΔT is the needed change in temperature

Result:

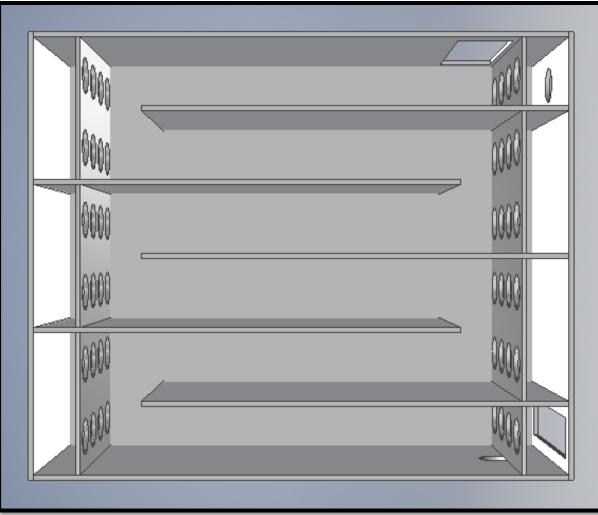
Power Required			
Without Heat Reutilization	With Heat Reutilization		
303.8 <i>W</i>	232.1 W		

- The biggest resistances to heat transfer are shell and tube fluid convection coefficients
 - $\circ~$ Low flow velocity in both channels
- Tube structure had minimal affect on overall heat transfer resistance
- 25% reduction in heater power is a great start, but further modifications can be made to increase power reduction.

Future Considerations

NASA

Modified Tubing Design



Future Considerations

Modified Flow Design

TFAWS 2018 - August 20-24, 2018

NASA

- Texas Space Grant Consortium
- University of Texas at Tyler advisor Dr. Andres Garcia
- NASA mentor Dr. John Graf
- Houston Custom Metal Works
- KBRWiley

References

[1] Barry, Patrick. "*Breathing Easy on the Space Station.*" NASA. [online]. Website: https://science.nasa.gov/science-news/science-at-nasa/2000/ast13nov_1

[2] Sridhar, K.R. "Oxygen Production on Mars Using Solid Oxide Electrolysis." Solid State Ionics. vol. 93. pp 321-328.

[3] Janna, William. *Design of Fluid Thermal Systems*. Delhi, India: Cengage Learning, 2015.

[4] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine. *Principles of Heat and Mass Transfer.* Delhi, India: Wiley, 2016.

[5] Texas Space Grant Consortium, "A Low Power, Solid State, Method of Oxygen Supply." 12 9 2017. [Online]. Available:

http://www.tsgc.utexas.edu/challenge/PDF/topics/Topic_TDC_37_F17.pdf.

[6] Texas Space Grant Consortium. "*TSGC Design Challenge.*" TSGC. [online]. Website: http://www.tsgc.utexas.edu/challenge/

[7] Wischnewski, Berndt. "*Calculation of Thermodynamic State Variables of Air*". Peace Software. [online]. Website: http://www.peacesoftware.de/einigewerte/luft_e.html

The University of Texas at TFYLER

NASA