Automatic creation of reduced-order models using Thermal Desktop

Derek W. Hengeveld, LoadPath
Jacob A. Moulton, LoadPath

Thermal & Fluids Analysis Workshop
TFAWS 2018
August 20-24, 2018
NASA Johnson Space Center
Houston, TX
Motivation

- Why Reduced-Order Models (ROMs)
Why Reduced-Order Models

• Advantages
 – Rapid analysis: 1000s of simulations in seconds
 – Intuitive user interface encourages collaboration
 – More effective data exploration through advanced analysis capabilities

• Built for Thermal Desktop®
 – Relates input factors (e.g. power) to output responses (e.g. temperature)
 – Leverages TD 6.0 API
What is a ROM?

• What is a reduced order model?
 – An accurate surrogate of a high fidelity model
 – Based on intelligent sampling then data fitting
 – Acts as a statistical emulator
 – Sampling based on Latin Hypercube methods
 – Data fitting based on Gaussian-Process methods
ROM Creation Process

- Sampling then data fitting

\[y = 10x + 10 \]

- Reduced-Order Model
- Select number of samples
- Model 'Shape' Unknown
- Multiple Input Factors

TFAWS 2018 – August 20-24, 2018
ROM Creation

- **Latin Hypercube Sampling**
 - A method for efficiently filling a design space
 - The range of each Input Factor (e.g. X) is divided into N intervals
 - \(N \) = number of samples
 - Each interval is used only once
 - Maximize the minimum distance between points

- **Gaussian Process model**
 - Does not impose specific model structure
 - E.g. ‘\(f(x) = mx + c \)’ not needed
 - Can fit a wide-range of data without prior knowledge of ‘shape’
 - Based on training data
 - Covariance matrix populated using squared exponential function
 - Optimized hyperparameters needed
 - Can fit data exactly
 - Useful for computer simulations
 - Provide confidence intervals

\(\text{TFAWS 2018 – August 20-24, 2018} \)
Examples

• Orion Crew Exploration Vehicle (CEV)
 – External fluid loop
 – Temperature: 1.6 K max residual mean and 5.0 K standard deviation
 – Power: 0.2 W max residual mean and 1.93 W standard deviation
 – Did poor job of replicating output responses with discontinuities

• Air Force Hex Bus
 – Standard deviation of 5.1 K (Tmax), 2.4 K (Tmin), and 2.5 K (Tmaxd)

• 3U CubeSat
 – Evaluated heat pipe performance

• JPL Mars Helicopter
 – Tomorrow 2:45 pm in Spinnaker
Process Flowchart

Thermal Desktop® Model

- Set-up and Generate Sampling Points
- Run Sampling Points to generate Training Data
- Run Training Data through a Data-fitting Algorithm
- ROM Testing
 - ROM Creation is complete
 - Accuracy of ROM is verified

Creation Tool

- Select and Set-up Input Factors and Output Responses
- Run using Thermal Desktop®

Exploration Tool

- Use any of the five analysis features to perform rapid thermal analysis
TD API Capabilities

• Thermal Desktop® 6.X API
 – Provides improved capabilities

• Supports creating and modifying the following entities
 – Case Sets
 – Conductors
 – Fluid Submodels
 – Heater/Heatloads
 – User Arrays/Code
 – Nodes
 – Optical Properties
 – Symbols
 – Thermophysical Properties

TD features
 – Expressions
 – Network Logic
 – Registers
 – Units
 – Others

• Miscellaneous functionality
 – Capture Graphics area
 – Run Case Set
 – SaveAs
 – Others

• Contact CR Tech for a demo
Path Forward

• Exploration Tool
 – Product release (August 2017)
 – Product update v2.0 (November 2017)
 – Working with customers to integrate new features

• Creation Tool
 – Beta version available
 – Currently having users testing and using – interested?
 – Commercial release (August 2018)
 – LoadPath ROM creation
Acknowledgements

• This material is based upon work supported by Small Business Innovative Research projects with the Air Force Research Laboratory and NASA