TFAWS Interdisciplinary Paper Session

Candidate Benchmark Cases for Thermal and Fluid Software Douglas P. Bell, CRTech

Presented By Douglas P. Bell

ANALYSIS WORKSHOP

&

Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX

What is a Benchmark Case?

- Benchmark
 - A standard against which things are compared or assessed
- Benchmark case
 - A description of a system to be modeled
 - Simple
 - Easy to model
 - Quick to solve
 - Accepted solution

The Case for Benchmark Cases

- Thermal and fluid software used for passive and active thermal designs lacks a standardized set of benchmark cases
 - NPARC has an established set for computation fluid dynamics
 - NAFEMS has an established set for finite elements
 - Primary focus is structural solutions, but some thermal cases have been established; most of the thermal cases are included in this paper.
- Uses for benchmark cases
 - Verify compare with a closed-form solution (Roache)
 - Validate compare with an experiment or other established solution (Roache)
 - Compare software products
 - Evaluate software capabilities
 - Train new employees
 - Verify installation

Benchmark Case Descriptions

- Reference
- Case features
 - Dimensions
 - Solution (0D, 1D, 2D, 3D)
 - What is the solution dimension?
 - Geometry (0D, 1D, 2D, 3D)
 - What model objects can be used?
 - Physics
 - What is being solved?
 - Boundary conditions
 - What is being applied?
 - Time dependence
 - Steady state, transient, or both?
 - Comparison
 - Is there a closed-form solution?
- What? No problem statement?
 - The answer for comparison can be determined by the governing body or the user

Sketch if available

HEAT TRANSFER CASES

HT001 – Conduction with Radiation

- Davies, Fenner, & Lewis, 1993, pp. 101-106
- Dimensions
 - 1D solution
 - 1D, 2D, or 3D geometry
- Physics
 - Conduction
- Boundary conditions
 - Temperature
 - Radiation
- Time dependence
 - Steady state
- Comparison
 - Closed-form solution

HT002 – Composite Wall

- Bejan, 1993, pp. 37-38
- Dimensions
 - 1D solution
 - 1D, 2D, or 3D geometry
- Physics
 - Conduction
 - Composite materials
- Boundary conditions
 - Convection
- Time dependence
 - Steady state
- Comparison
 - Closed-form solution

HT003 – Contact Joint

- Holman, 1986, p. 58
- Dimensions
 - 1D solution
 - 1D, 2D, or 3D geometry
- Physics
 - Conduction
 - Thermal contact
- Boundary conditions
 - Temperature
- Time dependence
 - Steady state
- Comparison
 - Closed-form solution

HT004 – Lumped Capacitance

- Holman, 1986, pp. 135-136
- Dimensions
 - 0D (zero D) solution
 - 0D, 2D, or 3D geometry
- Physics
 - Lumped capacitance
- Boundary conditions
 - Convection
- Time dependence
 - Transient
- Comparison
 - Closed-form solution

HT005 – Conduction with Internal Heat Generation

- Casey & Simpson, 1986, p. 2.3
- Dimensions
 - 1D solution
 - 1D, 2D, or 3D geometry
- Physics
 - Conduction
 - Heat generation
- Boundary conditions
 - Temperature
- Time dependence
 - Transient
- Comparison
 - Closed-form solution

HT006 – Oscillating Temperature BC

- Davies, Fenner, & Lewis, 1993, p. 107
- Dimensions
 - 1D solution
 - 1D, 2D, or 3D geometry
- Physics
 - Conduction
- Boundary conditions
 - Temperature
 - Transient
- Time dependence
 - Transient
- Comparison
 - Closed-form solution

HT007 – Temperature-Dependent Heat Generation

- Casey & Simpson, 1986, p. 2.5
- Dimensions
 - 1D solution
 - 1D, 2D, or 3D geometry
- Physics
 - Conduction
 - Heat generation
 - Variable properties
- Boundary conditions
 - Temperature
- Time dependence
 - Transient

HT008 – 2D Conduction with Convection

- Casey & Simpson, 1986, p. 2.8
- Dimensions
 - 2D solution
 - 2D or 3D geometry
- Physics
 - Conduction
- Boundary conditions
 - Convection
 - Temperature
- Time dependence
 - Steady state

HT009 – Temperature-Dependent Conductivity

- Casey & Simpson, 1986, p. 2.9
- Dimensions
 - 1D solution
 - 1D, 2D, or 3D geometry
- Physics
 - Conduction
 - Variable properties
- Boundary conditions
 - Heat flux
 - Temperature
- Time dependence
 - Steady state

HT010 – Discontinuous Flux

- Casey & Simpson, 1986, p. 2.11
- Dimensions
 - 2D solution
 - 2D or 3D geometry
- Physics
 - Conduction
- Boundary conditions
 - Heat flux
 - Temperature
- Time dependence
 - Steady state

HT011 – Composite with Heat Generation

- Glass, et al., 1988, pp. 4-7
- Dimensions
 - 2D solution
 - 2D or 3D geometry
- Physics
 - Conduction
 - Heat generation
 - Composite materials
- Boundary conditions
 - Convection
- Time dependence
 - Steady state
 - Transient

HT012 – Conduction and Radiation with Heat Generation

- Glass, et al., 1988, pp. 8-10
- Dimensions
 - 2D solution
 - 2D or 3D geometry
- Physics
 - Conduction
 - Composite materials
 - Heat generation
 - Radiation
- Boundary conditions
 - Radiation
 - Symmetry
- Time dependence
 - Steady state
 - Transient

FLUID FLOW CASES

FF001 – Multi-Inlet, Multi-Outlet Steady Flow

- Crowe, Elger, & Roberson, 2001, pp. 122-123
- Dimensions
 - 0D (zero D) solution
 - OD or 3D geometry
- Physics
 - Lumped capacitance
 - Fluid flow
- Boundary conditions
 - Mass flow rate
- Time dependence
 - Steady state
- Comparison
 - Closed-form solution
- Variations
 - Transient solution
 - Adiabatic and compressible
 - Real gas

FF002 – Pump and Pipe System

- Gerhart & Gross, 1985, pp. 476-480
- Dimensions
 - 1D solution
 - 1D geometry
- Physics
 - Fluid flow
- Boundary conditions
 - Hydrostatic pressure
 - Pipe system with losses
 - Single-curve pump
- Time dependence
 - Steady state
- Comparison
 - Closed-form solution

FF003 - Internal Fluid Flow with Convection

Dimensions

- 1D solution
- 1D geometry

Physics

- Fluid flow
- Convection

- Temperature
- Mass flow rate

Time dependence

- Transient
- Comparison
 - Closed-form solution

FF004 – Boiling

- Physics
 - Convection
 - Phase change
- Specific case not identified, yet.

FF005 – Water Hammer

- Wylie & Streeter, 1982
- Dimensions
 - 1D solution
 - 1D geometry
- Physics
 - Pressure wave
 - Compressible liquids
- Time dependence
 - Transient
- Comparison
 - Method of Characteristics

FF006 – Water Hammer (line priming)

- Dimensions
 - 1D solution
 - 1D geometry
- Physics
 - Pressure wave
 - Compressible liquids
 - Flat-front propagation
- Time dependence
 - Transient
- Comparison
 - Method of Characteristics
- Specific case not identified, yet

FF007 – Cryogenic Line Cooldown

Brennan, Brentari, Smith, & Steward, 1966

- Dimensions
 - 1D solution
 - 1D geometry
- Physics
 - Fluid flow
 - Convection
 - Phase change
 - Cryogenic fluids
- Time dependence
 - Transient

RADIATION CALCULATION CASES

RC001 – Non-Grey Radiation

- Howell, Menguc, & Siegel, Thermal Radiation Heat Transfer, 6th Edition, 2016
- Physics
 - Variable properties
 - Radiation
- Boundary conditions
 - Temperature
- Time dependence
 - Steady state
- Comparison
 - Closed-form solution

RCxxx – Radiation View Factors

- Howell, A Catalog of Radiation Heat Transfer Configuration Factors, 2018
 - Many configuration factors are cataloged with closed-form solutions
- Physics
 - Radiation
- Comparison
 - Closed-form solution

CONCLUSIONS

Conclusions

- A set of candidate benchmark cases has been presented
 - Compatible with thermal and fluid analysis software
 - Addresses needs of active and passive thermal designs
 - The set is incomplete
- CRTech is adding newly discovered benchmark cases to its current set of test cases
- NESC and the TFAWS community should consider standardizing a set of benchmark cases
 - CRTech will include any standardized benchmarks in testing

REFERENCES

References

- Bejan, A. (1993). *Heat Transfer*. New York: John Wiley & Sonda, Inc.
- Brennan, J. A., Brentari, E. G., Smith, R. V., & Steward, W. G. (1966). *Cooldown of Cryogenic Transfer Lines An Experimental Report*. NBS Report 9264.
- Casey, J. A., & Simpson, G. B. (1986). Benchmark Tests for Thermal Analysis. Glasgow: NAFEMS.
- Crowe, C. T., Elger, D. F., & Roberson, J. A. (2001). *Engineering Fluid Mechanics*. New York: John Wiley & Sons, Inc.
- Davies, G. A., Fenner, R. T., & Lewis, R. W. (Eds.). (1993). Background to Benchmarks. Glasgow: NAFEMS.
- Gerhart, P. M., & Gross, R. J. (1985). *Fundamentals of Fluid Mechanics*. Addison-Wesley Publishing Company.
- Glass, R. E., Burgess, M., Livesey, E., Geffroy, J., Bourdon, S., Mennerdahl, D., . . . Nagel, P. (1988). Standard Thermal Problem Set for the Evaluation of Heat Transfer Codes Used in the Assessment of Transportation Packages. Sandi National Laboratories NEACRP-L-299.
- Holman, J. P. (1986). *Heat Transfer*. McGraw-Hill Book Company.
- Howell, J. R. (2018). *A Catalog of Radiation Heat Transfer Configuration Factors*. Retrieved from http://www.thermalradiation.net/indexCat.html
- Howell, J. R., Menguc, M. P., & Siegel, R. (2016). *Thermal Radiation Heat Transfer, 6th Edition* (6th ed.). Boca Raton, FL: CRC Press.
- Roache, P. J. (1998). Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa Publishers.
- Wylie, E. B., & Streeter, V. L. (1982). *Fluid Transients*. Ann Arbor: FEB Press.