TFAWS Active Thermal Paper Session

ANALYSIS WORKSHOP

TFAWS LaRC 2019

Numerical Simulation of Transient Behavior of Vapor-Liquid Distribution in a Loop Heat Pipe Takuya Adachi, Koji Fujita, Hiroki Nagai (Tohoku University, Japan)

Presented By Takuya Adachi

Thermal & Fluids Analysis Workshop **TFAWS 2019** August 26-30, 2019 NASA Langley Research Center Hampton, VA

NA SA

Loop heat pipe

- **Advantages**
	- Heat transportation by the latent heat
		- Transporting a lot of heat
		- Long distance transport
	- Capillary force of the wick circulates the working fluid.
		- No electric power is required.
	- Shutdown
- Problem: **Unstable Startup**
	- Failure of startup
	- High temperature peak
	- Long time to convergence

Startup characteristics have to be understood.

NASA

Simplifying flow in transport lines

- The mass flow rate in the vapor line and in the liquid line are respectively constant.
- Condensation always starts at the condenser inlet.

As soon as evaporation occurs, the cond. inlet temp. would rise.

• Temperature distribution during startup cannot be accurately reproduced.

It is necessary to accurately reproduce the energy propagation in the transport lines.

Condensation starts.

– Calculation cost is high.

One-dimensional modeling is required to investigate the startup characteristics.

: temperature

 α_{1} : void fraction

 u : velocity

V : volume

TFAWS 2019 – August 26-30, 2019 4

Vapor-liquid distribution in transport lines

- General solution of startup failure
	- The startup heater is attached to the evaporator.
		- **Nucleation boiling is easy to occur.**
- Failure of startup heater
	- The additional startup heater is required on the vapor line to start the LHP's operation
	- **Vapor-liquid distribution in the transport lines would affect the startup characteristics.**

Startup heater (5 – 70 W)

The model that can investigate the influence of the vapor-liquid distribution in the transport lines is necessary to understand startup characteristics.

Developing the one-dimensional model of an LHP to investigate the startup characteristics.

- Reproducing the accurate energy propagation in the transport lines by using the Volume of fluid method.
- Modeling the condensation in one dimension.

NA SA

- **Evaporator**
	- The evaporation occurs as soon as heat is applied.
- Reservoir
	- Fluid is always saturated.
	- Amount of liquid in reservoir is the remainder of liquid in the transport lines.
- Amount of evaporation
	- Tanasawa's simplified model

$$
\dot{m}_{evap} = \frac{2\gamma}{2 - \gamma} \sqrt{\frac{M}{2\pi R} \left[\frac{\rho_v h_{lv} (T_{vg} - T_{int})}{T_{sat}^{3/2}} \right]}
$$

- $\gamma = 0.01$ is used for the calculation.
- T_{int} : vapor-liquid interface temperature

$$
T_{int} = T_{sat}(P_{vg})
$$

TFAWS 2019 – August 26-30, 2019

NAS!

• Heat conduction equation

$$
\rho_{wall}c_{p_{wall}}\frac{\partial T_{wall}}{\partial t} = k_{wall}\frac{\partial^2 T_{wall}}{\partial x^2} - \dot{Q}_{w_f} + \dot{Q}_{amb}
$$

• Momentum conservation equation

$$
\frac{\partial (\rho_f u)}{\partial t} + \frac{\partial (\rho_f u u)}{\partial x} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu_f \frac{\partial u}{\partial x} \right) - \frac{\xi}{d_{in}} \frac{1}{2} \rho_f u_i^2
$$

- Mass conservation drop $\partial (\rho_f u$ ∂x $= 0$
- Energy conservation equation $\rho_f c_{p_f}$ ∂T_f $\frac{\partial f}{\partial t} + \rho_f c_{p_f}$ ∂T_f ∂x = ∂ ∂x k_f ∂T_f ∂x $+ \dot{Q}_{W_f} + S_v \cdot h_{lv}$

Nomenclature

- c_p $\;$: specific heat [kg/m²/s]
- d_{in} : diameter [m]
- h_{lv} : latent heat [J/kg]
- k : thermal conductivity $[W/(m \cdot K)]$
- p : pressure [Pa]
- ሶ : heat flow $[W/m^3]$
- T : temperature [K]
- u : velosity $[m/s]$
- μ : viscosity [Pa·s]
- ξ : Darcy friction coefficient [-]
- ρ : density [kg/m³]

Heat generation by phase change

Pressure

Condensation model

• Void fraction transport equation

$$
\rho_v \frac{\partial \alpha_v}{\partial t} + \rho_v \frac{\partial (u \alpha_v)}{\partial x} = S_{\alpha_v}
$$

– Amount of condensation

$$
S_{\alpha_{v}} = \left(k_{l} \frac{\partial T}{\partial \vec{n}}\bigg|_{l} - k_{v} \frac{\partial T}{\partial \vec{n}}\bigg|_{v}\right) \frac{A_{int}}{h_{lv} \cdot V}
$$

- One-dimensional model
	- Vapor:Saturation temperature based on pressure (T_{sat})
	- Liquid: Temperature from the energy equation (T_f)

$$
S_{\alpha_v} = k_l \frac{T_f - T_{sat}}{r - r_v} \cdot \frac{A_{int}}{h_{lv} \cdot V}
$$

Vapor \boldsymbol{r} r_{v} T_f T_{sat} **Wall** Liquid One-dimensional model k_1 I_{sat} $r - r_v$

Evaporator / transport lines boundary NASA $\text{Node } 0$ Node 1 $\text{Node } n$ $\text{Node } n+1$ P_{cc} Vapor line Condenser Liquid line Evaporator Reservoir

 $u_0 = u_{\nu q}$ $P_0 = P_1$ $u_{n+1} = u_n$ $P_{n+1} = P_{cc}$ $T_{wall, 0} = T_{evap, wall}$ • $u_{\nu q}$ is calculated from \dot{m}_{evap} .

 $T_{fluid, 0} = T_{vg}$

• P_{cc} is calculated as the saturation pressure.

$$
T_{wall, n+1} = T_{cc}
$$

$$
T_{fluid, n+1} = T_{cc}
$$

Calculation results

NH SA

- There is a difference in the time when the temperature rises in the V.L.
- V.L. Inlet temperature is lower than Cond. Inlet temperature.

Time lag between fluid and wall

- There is a difference between the time when the wall temperature rises and the time when the fluid temperature rises at Cond. Inlet.
- Fluid temperature is the same as the wall temperature at V.L. Middle.

The cause of time lag is not heat capacity of the pipe wall.

NA ST

Velocity and void fraction distribution

- Vapor penetrates the condenser.
- Vapor completely condenses in the condenser.
- Velocity of the vapor is almost constant.

The position where condensation starts

- Vapor is condensed in the condenser.
- Condensation does not start at the condenser inlet.

This model can investigate the position where condensation starts.

NASA

Void fraction distribution

NA SA

- Cond. inlet temperature becomes higher than Evap. wall temperature.
	- Cause: heat generation by phase change at Cond. inlet $\rho_f c_{p_f}$ ∂T_f $\frac{\partial f}{\partial t} + \rho_f c_{p_f}$ ∂T_f ∂x = ∂ ∂x k_f ∂T_f ∂x $+ \dot{Q}_{W_f} + S_v \cdot h_{lv}$

Condensation model needs modification.

Reservoir temperature

- Reservoir temperature decreases due to the returning liquid.
	- This tendency is not consistent with experiments.

Phase change in the reservoir should be modeled.

NH SI

Conclusion

The one-dimensional model of an LHP was developed.

- Time lag can be reproduced.
- The change of the position where the condensation starts can be calculated.
- One-dimensional condensation model was proposed.

• Future works

- Revising the condensation model
- Considering the phase change in the reservoir
- Validation