TFAWS Active Thermal Paper Session

Calculation of Radiative Fin Performance Parameters for Radiator Analysis Louis Jorski The Boeing Company

Presented By Louis Jorski

ANALYSIS WORKSHOP

&

THERMAR

Not subject to US Export Administration Regulations (15 C.F.R. Parts 730-774) or US International Traffic in Arms Regulations (22 C.F.R. Parts 120-130) Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA

- Active radiators provide the primary source of heat rejection for long duration manned spacecraft
- Radiators consist of a series of flow tubes bonded to a highly conductive face sheet with a specialized surface coating to maximize its radiative heat loss
- The face sheet effectively acts as a series of fins which extends the surface areas of the individual flow tubes

- Temperature of the face sheet decreases as the distance from the flow tube increases due to the material's conductive resistance
- Reduces the amount of additional heat rejection gained by adding additional surface area
- Fin efficiency (η) provides a convenient measure of how effectively the face sheet extends the heated surface area
- Fin efficiency is the ratio of a fin's actual heat rejection to its theoretical maximum heat rejection that would be obtained if the entire fin was at its base temperature (infinite thermal conductivity)

$$\eta = \frac{q_{Actual}}{q_{Max}}$$

 Maximum theoretical heat rejection (q_{max}) can be calculated directly from the net radiative heat transfer relationship:

$$q_{Max} = \sigma \varepsilon L \Delta y \left(T_{base}^4 - T_{sink}^4 \right)$$

- Actual heat rejection is equal to the total amount of heat conducted through the fin's base
- Heat conduced through the base can be calculated from the temperature gradient at the base using Fourier's Law
- Requires solving a differential equation for the surface temperature distribution

Fin Model

Differential Equation Development

$$q_x = -k\delta\Delta y \frac{dT}{dx} \quad (Fourier's \ Law)$$

 $q_{x+dx} = q_x + \frac{dq_x}{dx}dx$ (Taylor Expansion)

$$q_{x+dx} = -k\delta\Delta y \frac{dT}{dx} - k\delta\Delta y \frac{d^2T}{dx^2} dx$$

Fin Differential Element

$$q_{loss} = \sigma \varepsilon \Delta y \Delta x \big(T^4 - T^4_{sink} \big)$$

$$q_{x} = q_{x+dx} + q_{loss} \quad (Conservation of Energy) \qquad Note: \Delta x \approx dx$$
$$-k\delta\Delta y \frac{dT}{dx} = -k\delta\Delta y \frac{dT}{dx} - k\delta\Delta y \frac{d^{2}T}{dx^{2}} dx + \sigma\Delta y\Delta x\varepsilon (T^{4} - T_{sink}^{4})$$
$$\frac{d^{2}T}{dx^{2}} = \frac{\sigma\varepsilon}{k\delta} (T^{4} - T_{sink}^{4})$$

$$\begin{aligned} \frac{d^2T}{dx^2} &= \frac{\sigma\varepsilon}{k\delta} \left(T^4 - T_{sink}^4 \right) \quad set \quad K_1 = \frac{\sigma\varepsilon}{k\delta} \quad and \quad K_2 = \frac{\sigma\varepsilon T_{sink}^4}{k\delta} \\ \frac{d^2T}{dx^2} &= K_1 T^4 - K_2 \\ Boundary Conditions: \quad T(x=0) = T_{Base} \quad \frac{dT}{dx}|_{x=L} = 0 \\ \frac{dT}{dx} &= -\left(\frac{2K_1 T^5}{5} - 2K_2 T + C\right)^{1/2} \quad (from integrating once) \\ C &= \frac{-2K_1 T_{tip}^5}{5} + 2K_2 T_{tip} \quad (from applying second boundary condition) \\ \frac{dT}{dx} &= -\left(\frac{2K_1}{5} \left(T^5 - T_{tip}^5\right) - 2K_2 \left(T - T_{tip}\right)\right)^{1/2} \quad where T_{tip} = T|_{x=L} \\ - T_{tip} \text{ is unknown so this expression for dT/dx is not usable until T_{tip} is found \end{aligned}$$

- An additional integration must be performed so that the first boundary condition can be applied and used to solve for T_{tip}

$$\int \left(\frac{2K_1}{5} \left(T^5 - T_{tip}^5\right) - 2K_2 \left(T - T_{tip}\right)\right)^{-1/2} dT = -\int dx$$

- Left hand integral cannot be solved analytically
- Numerical integration methods cannot be applied because the integrand is asymptotic at T = T_{tip}
- Change of variable is required (proposed by Mackay and Leventhal)

set
$$v^2 = \frac{T}{T_{tip}} - 1$$
 $dT = 2T_{tip}vdv$

$$2T_{tip}v\frac{dv}{dx} = -v\left(\frac{2K_1T_{tip}^5}{5}\right)^{1/2} \left((v^2+1)^4 + (v^2+1)^3 + (v^2+1)^2 + (v^2+1) + 1 - \frac{5K_2}{K_1T_{tip}^4}\right)^{1/2}$$

$$\int_{v_{min}}^{v_{max}} \frac{dv}{\left((v^2+1)^4 + (v^2+1)^3 + (v^2+1)^2 + (v^2+1) + 1 - \frac{5K_2}{K_1 T_{tip}^4}\right)^{1/2}} = \int_0^L \left(\frac{K_1 T_{tip}^3}{10}\right)^{1/2} dx$$

where $v_{max} = v(T = T_B) = (T_B/T_{tip} - 1)^{1/2}$ $v_{min} = v(T = T_{tip}) = 0$

Not subject to US Export Administration Regulations (15 C.F.R. Parts 730-774) or US International Traffic in Arms Regulations (22 C.F.R. Parts 120-130) 4 10

Equation Solution

$$set \quad F(v) = \int_{v_{min}}^{v_{max}} \frac{dv}{\left((v^2 + 1)^4 + (v^2 + 1)^3 + (v^2 + 1)^2 + (v^2 + 1) + 1 - \frac{5K_2}{K_1 T_{tip}^4}\right)^{1/2}}$$
$$T_{tip} = \left[\frac{10}{K_1} \left(\frac{F(v)}{L}\right)^2\right]^{1/3} \quad or \quad 0 = T_{tip} - \left[\frac{10}{K_1} \left(\frac{F(v)}{L}\right)^2\right]^{1/3}$$

- F(v) can be evaluated using standard numerical integration methods if a value for T_{tip} is assumed

– Maximum theoretical range for
$$T_{tip}$$
:

 $T_{sink} < T_{tip} < T_{base}$

- F(v) complex or undefined for:

 $T_{tip} \leq T_{sink}$ and $T_{tip} > T_{base}$ (F_v asymptotic at T_{base})

- Solving for T_{tip} reduces the problem to solving a system of two equations or finding a root
- Solvable by some root finding algorithms in scientific computing software packages

Tip Temperature Function

TFAWS 2019 - August 26-30, 2019

Root Solving - Fixed Point Iteration

- A fixed point is a value for which a function returns the same value
- By starting with an initial guess and substituting the resultant value back into a fixed point function, an accurate approximation for the fixed point can be obtained
- Procedure:

Pick T_{tip0}

$$T_{tip} = \left[\frac{10}{K_1} \left(\frac{F(v)}{L}\right)^2\right]^{1/3} with v(T_{tip0})$$

$$While |T_{tip} - T_{tip0}| < tolerance$$

$$T_{tip} = T_{tip0}$$

$$T_{tip} = \left[\frac{10}{K_1} \left(\frac{F(v)}{L}\right)^2\right]^{1/3} with v(T_{tip0})$$

• Rate of convergence and ability of the iteration to converge is highly dependent on the accuracy of the initial guess

NAS

- Repetitively halve the possible range based on sign change until within the desired tolerance
- Procedure:

Set
$$T_{min} = T_{sink}$$
 $T_{max} = T_{base}$ $T_{tip} = 0.5(T_{max} + T_{min})$
 $\mathbb{F}_{max} = T_{max} - \left[\frac{10}{K_1} \left(\frac{F(v)}{L}\right)^2\right]^{1/3}$ with $v(T_{max})$
While $0.5(T_{max} - T_{min}) < tolerance$
 $\mathbb{F}_{tip} = T_{tip} - \left[\frac{10}{K_1} \left(\frac{F(v)}{L}\right)^2\right]^{1/3}$ with $v(T_{tip})$
If $\mathbb{F}_{tip}\mathbb{F}_{max} > 0 \Rightarrow T_{max} = T_{tip}$ $\mathbb{F}_{max} = \mathbb{F}_{tip}$
Else $T_{min} = T_{tip}$
 $T_{tip} = 0.5(T_{max} + T_{min})$

• Iteration will always converge if a root exists in the initial range

$$q_{Actual} = -k\delta\Delta y \frac{dT}{dx}|_{x=0} \quad (Fourier's \ Law)$$
$$q_{Actual} = k\delta\Delta y \left(\frac{2K_1}{5} \left(T_{base}^5 - T_{tip}^5\right) - 2K_2 \left(T_{base} - T_{tip}\right)\right)^{1/2}$$

- The normalized heat rejection $q_{Actual}/\Delta y$ is itself a valuable parameter
- With a valid expression for q_{Actual} , the fin efficiency can be calculated

$$\eta = \frac{k\delta\left(\frac{2K_1}{5}\left(T_{base}^5 - T_{tip}^5\right) - 2K_2\left(T_{base} - T_{tip}\right)\right)^{1/2}}{\sigma\varepsilon L\left(T_{base}^4 - T_{sink}^4\right)}$$

 Once T_{tip} is known, the temperature (T_i) at points (x_i) along the fin can also be solved for using a similar methodology

$$T_{tip} = \left[\frac{10}{K_1} \left(\frac{F(v)}{L_i}\right)^2\right]^{1/3} \quad or \quad 0 = T_{tip} - \left[\frac{10}{K_1} \left(\frac{F(v)}{L_i}\right)^2\right]^{1/3}$$

$$F(v) = \int_{v_{min}}^{v_{max}} \frac{dv}{\left((v^2 + 1)^4 + (v^2 + 1)^3 + (v^2 + 1)^2 + (v^2 + 1) + 1 - \frac{5K_2}{K_1 T_{tip}^4} \right)^{1/2}}$$

$$v_{max} = v(T = T_B) = \left(\frac{T_{base}}{T_{tip}} - 1\right)^{1/2}$$
 $v_{min} = v(T = T_i) = \left(\frac{T_i}{T_{tip}} - 1\right)^{1/2}$

NAS

Surface Temperature Distribution

TFAWS 2019 - August 26-30, 2019

- Efficiency curve is a function of ε , k, δ , T_{base}, and T_{sink}
- For a given design, \mathcal{E} , k, and δ will be constant but T_{base} and T_{sink} will vary depending on system operation
 - k and δ have identical effects on fin performance
 - T_{sink} has very little impact on efficiency for high efficiency fins ($\eta > -0.75$)
- Decreased efficiency does not necessarily mean decreased heat rejection

Increase	Efficiency	Heat Rejection	Decrease	Efficiency	Heat Rejection
Emissivity	Decrease	Increase	Emissivity	Increase	Decrease
Conductivity	Increase	Increase	Conductivity	Decrease	Decrease
Thickness	Increase	Increase	Thickness	Decrease	Decrease
T _{base}	Decrease	Increase	T _{base}	Increase	Decrease
T _{sink}	Decrease	Decrease	T _{sink}	Increase	Increase

Efficiency Curve Sensitivity

Summary

- Spacecraft radiator surfaces effectively function as a series of fins
- Fin efficiency is a useful measure of radiator surface performance
- Actual heat rejection and fin efficiency can be calculated analytically if the fin tip temperature is known
- Fin tip temperature can be found using iterative numerical methods
- Surface temperatures can be calculated using similar numerical methods once the tip temperature is known
- Fin performance is a function of ϵ , k, δ , T_{base}, and T_{sink}

Questions

Not subject to US Export Administration Regulations (15 C.F.R. Parts 730-774) or US International Traffic in Arms Regulations (22 C.F.R. Parts 120-130)

References

- Burden, Richard L. Faires, J Douglas. *Numerical Analysis*, 2011
- Incropera, Frank P. Dewitt, David P. Bergman, Theodore L. Lavine, Adrienne S. *Fundamentals of Heat and Mass Transfer*, 2007
- Kraus, Allan D. Aziz, Abdul. Welty, James. *Extend Surface Heat Transfer*, 2001