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Research Background

Thermal analysis of the Spacecraft
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Temperature Prediction

✓ Temperature prediction of TMM has uncertainty due to

“model incompleteness” and “disturbance of boundary condition”

✓ In deep space missions, estimating thermal state of entire system is difficult

due to limited temperature data

Uncertainty of TMM
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Research Background

Temperature Estimation using “Data Assimilation”
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➣ By using flight temperature datasets, estimate the thermal 

state in higher accuracy than conventional TMM analysis 

Thermal Analysis by TMM Flight Data

Temperature   

monitoring



Research Background

Data assimilation technique
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✓ Statistic approach to combine observed data and simulated data

Data Assimilation 

Simulation

Estimation of System State

Observation

Observed data

Simulated data

Data assimilation
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Objective
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✓ Apply the data assimilation technique to the TMM in order to 

improve the temperature estimation accuracy

✓ Confirm the availability of data assimilation assisted TMM and 

compare its performance with conventional thermal analysis

Thermal Mathematical Model

Limited Temperature Datasets

Better Temperature Estimation?



Methodology

1. Thermal Mathematical Model (TMM)

2. Ensemble Kalman Filter (EnKF)

3. Data Assimilation / Ensenble Kalman Filter
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Methodology

1. Thermal Mathematical Model (TMM)
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Governing equation

Heat balance between nodes

1 2 3

Node

Conductance : Cij

Prediction

STEP : 1 STEP : 2
Update

Initial State
Update

STEP : 0

Prediction

TMM consists of…  

✓Node : heat generation / temperature / heat capacity

✓Path : thermal conductance 

Temperature distribution



Methodology

2. Ensemble Kalman Filter (EnKF)
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Kalman Filtering 

Xest ＝ Xsimu ＋ K × ( Xsimu – Y )

Xest : Estimated data

Xsimu : Simulated data

Y  : Observed data

K : Kalman gain

Xest : Estimated data Xsimu : Simulated data              Y  : Observed data

✓ Simulated data is modified by difference between simulation and observation

✓ Kalman gain “K” is calculated from Variance of Xsimu

Estimation variance σ2 : System Noise σ2 : Observation Noise



Methodology

2. Ensemble Kalman Filter (EnKF)
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Methodology

2. Ensemble Kalman Filter (EnKF)
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Experiment

1. Overview

2. Building a TMM

3. Thermal Test Setup

4. Correlation and Uncertainty Analysis of TMM 
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Experiment
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Compare the Accuracy of Temperature Estimation

Thermal Test A  (Ground Test Data)

Build a Simple Thermal Mathematical Model

Model - Test Correlation 

Thermal Test B  (Flight Data)

Conventional 

TMM Analysis

EnKF Assisted TMM 

Analysis 

1. Overview



Experiment

2. Building a TMM 
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✓ 1-Dimensional thermal mathematical model

✓ Each conductance Cij has different uncertainty

✓ Heat input and output Q have uncertainty

➣ Built a simple and high uncertain thermal model

Governing Equation
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Experiment

3. Thermal Test
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Heater

Heatsink

Aluminum

Acrylic resin

Temperature Sensor

Node No. Content

1 Heater

2 Aluminum

3 Acrylic resin / upper part

4 Acrylic resin / lower part

- Heatsink

Test Model 
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4

C12

C23

3

C34

C45

Qin

Qout



Experiment

3. Thermal Test
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1

2

4

C12

C23

3

C34

C45

Qin

Qout

Heater

Heatsink

Aluminum

Acrylic 

resin

Parameter Factor ± 3σ

Qin Heat generation : Qheater ± 15 %

Qout Heatsink temperature : Theatsink ± 0.45 K

C12 Contact conductance : h12  ± 50 %

C23 Contact conductance : h23 ± 50 %

C34 Thermal conductivity : kresin ± 0.04 W/(m･K)

C45 Contact conductance : h45 ± 50 %

Model Uncertainty

Uncertainty of the Thermal Test



Experiment

4. Correlation and Uncertainty Analysis of TMM 

① Test A (Ground Test Simulation)

Test Condition Value

Qheater 2.0 W

Theatsink 383.2 K

Measurement Error (3σ) ± 1.0 K

Thermal Test Result 

③ Test B (Flight Data Simulation)

Test Condition Value

Qheater 2.4 W

Theatsink 383.2 K

Measurement Error (3σ) ± 1.0 K

④ Thermal Analysis② Model-Test Correlation result

Content Value

h12 300 W/(m2･K)

h23 500 W/(m2･K)

kresin 0.26 W/(m･K)

h45 10000 W/(m2･K)

1

2

4

h12

h23

3
kresin

h45



Result and Discussion

1. Conventional TMM Analysis 

2. EnKF Assisted TMM Analysis

3. Comparison of Two Methods
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Result and Discussion

1. Conventional TMM Analysis 
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T1 Transition

T3 Transition

T2 Transition

T4 Transition

Thermal Analysis by TMM  

1

2

4

T1

3

T2

T3

T4



Result and Discussion

2. EnKF Assisted TMM Analysis
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T1 Transition / observing T1

T3 Transition / observing T1

T2 Transition / observing T1

T4 Transition / observing T1

1

2

4

T1

3

T2

T3

T4

Thermal Analysis by EnKF applied TMM / Observation Node : Node 1 



Result and Discussion
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➣ The data assimilation result agrees with measured data very well

➣ The uncertainty of the temperature estimation decrease drastically

comparing with conventional TMM analysis

T1 Transition / observing T1 T3 Transition / observing T1

1

2

4

T1

3

T2

T3

T4

Comparison with “Conventional TMM” & “EnKF assisted TMM” 

3. Comparison of Two Methods



Result and Discussion

3. Comparison of Two Methods
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Standard Deviation of Analysis Result

TMM
EnKF assisted TMM  

(T1 Observation)

T1 2.13 K 0.00 K

T2 1.96 K 0.08 K

T3 2.07 K 0.37 K

T4 - 0.41 K -0.43 K

Difference from Measured Temperature

TMM
EnKF assisted TMM  

(T1 Observation)

T1 2.91 K 0.27 K

T2 2.74 K 0.68 K

T3 2.28 K 0.75 K

T4 0.43 K 0.55 K

➣ Difference from measured data is decreased by data assimilation

➣ The uncertainty of the analysis is decreased by data assimilation

➣ T4 result was not improved very well due to observation position

and dominant effect of heatsink



Conclusion
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➣ The data assimilation result agreed with measured data

➣ The uncertainty of the temperature estimation decreased drastically

comparing with conventional TMM analysis

➣We confirmed an availability of data assimilation on thermal analysis 

by simple model and thermal test

✓ Data assimilation technique was introduced 

✓ Data assimilation was applied to TMM and node temperature was 

estimated using partial measured data

✓ Performance of conventional TMM and data assimilation assisted 

TMM were compared

Content of the presentation

Result


