#### **TFAWS Interdisciplinary Paper Session**



#### Thermal characterization of SiC MOSFET devices

Andras Vass-Varnai, Young Joon Cho, Joe Proulx, Jimmy He, Peter Doughty Gabor Farkas, Marta Rencz Mentor Graphics a Siemens Business

> Presented By Andras Vass-Varnai

TFAWS LaRC 2019

ANALYSIS WORKSHOP

&

HERNASI

Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA



#### Outline



- Thermal transient testing of MOSFET devices
  - Potential problems with SiC
- A proposed simulation and test based method
- Experimental example
- Conclusions

### Thermal transient testing of power devices

- Measure how heat is flowing through a package from junction to ambient
- Convert to a representation of the heat path as an Rth-Cth plot (Structure Function)
- A non-destructive method to:
  - Determining Zth
  - Providing insight to heat path segments
  - Comparing structures (e.g. to known good sample)
  - Changes over time (delamination, cracks in substrate, etc.)
  - and more...





- The forward voltage of a PN junction under forced current condition can be used as a very accurate thermometer
- The change of the forward voltage (TSP – temperature sensitive parameter) should be carefully calibrated against the change of the temperature (see JEDEC JESD51-1 and MIL-STD-750D)
  - In the calibration process the S<sub>VF</sub> temperature sensitivity of the forward voltage is obtained



# @2mV/K sensitivity app.0.01 degC resolution can be achieved







• Each section of the Structure Function path represents physical objects the heat encounters. There is a correlation between physical objects and sections of the RC path.





#### MOS diode (Threshold mode) – current step method

- Gate connected to the Drain
- The resulting two-pole device behaves as a simple diode
- The threshold voltage can be higher than 5V

#### • Heating on R<sub>ds,on</sub>, measurement on body diode

- A negative sensor current is applied to the MOSFET
- For the heating, a sufficiently high voltage is applied to the gate and the device heated with high current (IH-IS)
- Simultaneously to the heating current switched off the gate voltage turned to zero -> the transistor closes and the sensor current flows through the diode



NAS





Power cycling test data on a SiC MOSFET



Cth [Ws/K]

TFAWS 2019 - August 26-30, 2019





- The SiO<sub>2</sub> SiC transition, may contain trapped charge carriers due to the large concentration of crystalline errors at the interface
  - Some techniques, such as post-oxidation annealing of the gate oxide in nitric or nitrous oxide (NO or N<sub>2</sub>O) may improve the device performance
- In some structures the movement of these trapped charges cause electrical disturbances up to the several seconds range after the switching
- Thermal transient tests should be carried out in connection modes, where the gate potential remains unchanged during the process.
- This makes common test procedures, such as the "MOS diode" setup and the fixed V<sub>DS</sub> arrangement unsuitable for testing SiC devices.

# Examples of electrical parasitic response

- SiC MOSFET measured with 20A sensor current, 240 A heating current and 15V  $\rm V_{GS}$ 





 SiC MOSFET measured with 20A sensor current, 5A heating current and 10V VGS



### Measuring the reverse diode always works

 As the issues demonstrated above most likely correspond to a gate charge related phenomena, the SiC diodes are not affected





- Measuring the diode only is not enough – transistor characteristics is also necessary
- 1. Use diode test data to calibrate a the simulation model of the component
- 2. Get the transistor thermal properties from the calibrated simulation model







- Build detailed model of the component
- Adjust material properties and geometries until the simulated thermal response matches the measurement
- Achieved via an automated optimization process





Calibrated



#### -Uncalibrated

87.7 64.1

46.8

34.2

25





## **EXPERIMENTAL**



#### **Test arrangement and simulation model**

- Use a Si IGBT package with embedded reverse diodes as demonstrator
- This allows not only simulation but experimental verification as well – may not be possible in case of SiC module





NASA

• First simulation attempt – similar shape, but multiple inaccuracies





#### **Optimization of simulation parameters I.**

- Main variables are
  - Thermal conductivity coefficients
  - Size of package features
  - Specific heat and density (less important)
- Set up simulation scenarios

|                 | Unit            | Initial<br>Value | Parameter<br>range | Calibrated<br>Value |
|-----------------|-----------------|------------------|--------------------|---------------------|
| Active<br>Area  | mm <sup>2</sup> | 81               | 64 ~ 81            | 79                  |
| Die<br>Adhesive | W/mK            | 33               | 30 ~ 35            | 33                  |
| Ceramic         | W/mK            | 25               | 25 ~ 35            | 34                  |
| Solder          | W/mK            | 40               | 35 ~45             | 45                  |







 Very good match as the DA layer and the substrate is already calibrated



• From here the package thermal metrics can be identified accurately using simulation



#### **Determining R<sub>thJC</sub> from model**

- RthJC can be determined based on its definition.
  - We used two possible interpretations:

• 
$$R_{thJC} = \frac{Tj(max) - TC(max)}{dP}$$
  
•  $R_{thJC} = \frac{Tj(mean) - TC(mean)}{dP}$ 





 The divergence separation region of the structure functions is in line with the R<sub>thJC</sub> range calculated based on the model

| Temperatures          | Maximum | Mean    |
|-----------------------|---------|---------|
| Base plate [°C]       | 70.3373 | 62.9045 |
| IGBT active area [°C] | 75.829  | 74.2957 |
| RthJC [K/W]           | 0.079   | 0.163   |

dP=69.5W





#### Conclusions



- Thermal transient testing using electrical test methods can be applied to SiC semiconductors package thermal characterization
- Certain novel compound semiconductor structures require non-standard test methods or in particular cases may not be suited to this characterization method.
- The reverse diode, if present is a well measurable component
- Based on the thermal transient response of this component the package structure can be identified
- If a thermal simulation environment is available, the simulation model can be calibrated to the test-based structure functions
  - The calibrated model will respond correctly in a wide range of time constants.
- Using this calibrated model the thermal properties of all heat sources in the package can be simulated
- Having a calibrated package model has further benefits, it helps to identify a suitable way to interpret the separation point of structure functions if the separation is not a clear single point, but shows up rather like a continuous region