TFAWS Passive Thermal Paper Session

Modelling of Radiative Heat Transfer of a Square Trihedral Design Radiator Panel on the Lunar Surface

Colin Butler, Jeff Punch University of Limerick, Ireland. Ronan Flanagan NUMA Engineering Services Ltd., Dundalk, Ireland. Nick Jeffers Thermal Management Research Group, Nokia Bell Labs, Ireland.

> Presented By Colin Butler

> > Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA

ANALYSIS WORKSHOP

 \mathbf{g}

THERMAN

TFAWS LaRC 2019

- **Introduction**
- Trihedral Design Radiator
- Radiative Model Description
	- Thermal model development
	- View Factor determination
- Results
	- Comparison with commercial software
	- Initial heat transfer results of trihedral radiator
- Manufacturability
- Conclusions & Future Work

- Power requirements for telecommunication satellites has increased from 2-5 kW to 20-30 kW since the 2000's.
- Increased miniaturisation of electronics and rapid growth of smallsat industry.
- This has led to greater heat dissipation requirements for spacecraft radiators.
- New concepts have been developed in recent years in order to enhance radiator performance.

Trihedral Design Radiator

- Definition: "*Three plane faces which meet at a common apex point".*
- Aims to minimise effects of environmental radiation sources and increase the surface area visible to deep space.

NY ST

- Single trihedral element can be tiled into an array.
- Similar geometry to corner cube retro-reflectors used in radar and optical industries.

- Geometry on lunar surface with coordinates at Apollo 17 landing site (20°N, 31°E).
- Develop **radiative** model which takes into account all environmental sources of heat:
	- Direct solar flux
	- Indirect solar flux reflections
	- Albedo flux
	- Lunar infra-red flux
	- Internal heating
- Determine radiative heat transfer from each radiator surface.

Model Description

• Solar UV flux

– Direct incident irradiation:

NY ST

• Solar UV flux

- Indirect (diffuse) reflections and lunar Albedo by Radiation Network Methodology.
- For each surface:

$$
J_i(1 - F_{ii}) - \sum_{i \neq j} F_{ij} J_j = (1 - \alpha_i) q''_{solar_{direct}, i}
$$

(1) Vlassov, V. *et al*., 2010. J. Braz. Soc. Mech. Sci. 32, 400-408. (2) Racca, G., 1995. Planet. Space Sci. 43, 835-842.

Model Description

• Lunar IR flux

- Diffuse Infra-red heat radiated from lunar surface. $\sum_{i=1}^{n}$
- Lunar surface temperature varies as a function of location, time and surface properties⁽²⁾.

– As before, apply Radiation Network Methodology to IR sources:

$$
J_i[1 - F_{ii}(1 - \varepsilon_i)] - (1 - \varepsilon_i) \sum_{i \neq j} F_{ij} J_j = \varepsilon_i \sigma T_i^4
$$

– Setting *T* here for all radiator surfaces to a maximum allowable temperature of 40°C.

Tlunar **at Apollo 17 landing site**

- Net radiative heat transfer per surface
	- Difference of outgoing less incoming sources of heat:

$$
q_{net,i} = (q_{solar_{out},i} + q_{IR_{out},i}) - (q_{solar_{in},i} + q_{IR_{in},i})
$$

= $\left[\frac{\varepsilon_i A_i}{1 - \varepsilon_i} (\sigma T_i^4 - J_i)\right] - \alpha_i (q_{solar_{direct},i} + q_{solar_{indirect},i})$

• Total radiator heat transfer rate:

$$
q_{rad} = \sum_{i=1}^{21} q_{net,i}
$$

• View Factor Determination

- Monte Carlo based Ray Tracing.
- Shoots *N* rays originating from face centroid with a distribution defined by Lambert's cosine Law:

• View Factor Determination (Validation)

1. Comparison with analytical solution(3) for "*Perpendicular rectangles with a common edge*".

TFAWS 2019 – August 26-30, 2019 11

• View Factor Determination (Validation)

2. Comparison with analytical solution(3) for "*Parallel, equal, directly opposed rectangles*".

• View Factor Determination

– Effect of Lunar disc diameter (*D*) on *Fi,lunar*

- Comparison with commercial software
	- **SYSTEMA/THERMICA** v4 by Airbus.
	- **FloTHERM XT** v3.3 by Mentor.
- Test case at Apollo 17 landing site for $\varphi = 90^\circ$

- Comparison with commercial software
	- Direct solar heat flux:

NH SI

- Comparison with commercial software
	- Direct and indirect absorbed solar heat flux:

• Radiative Heat Transfer of Trihedral Radiator

– Effect of Apex Angle (*φ*)

Compared to flat plate ($\varphi \equiv 120^{\circ}$ **):**

$\boldsymbol{\varphi}$	Best case (sunrise/sunset)	Worst case (noon)	Full day
60°	$+84.2%$	$-40.2%$	$+15.0%$
90°	$+31.7%$	$-11.8%$	$+8.4%$
110°	$+8.8%$	$-0.6%$	$+4.4%$

NH S

• Radiative Heat Transfer of Trihedral Radiator

– Effect of Azimuth Angle (*ϕ*)

NH SA

• Radiative Heat Transfer of Trihedral Radiator

– Effect of Inclination Angle (*β*)

Compared to flat plate ($\varphi \equiv 120^{\circ}$ **):**

Manufacturability

• Honeycomb Panel

- Metal 3D printing
	- Sample array of 4 Trihedral elements additively manufactured with AlSi10Mg.

- Developed model with can predict radiative heat transfer of a radiator panel on lunar surface.
- Shows excellent agreement with commercial software.
- Initial results show that trihedral geometry offers good potential for most conditions studied here.
- Smaller apex angles dissipate more heat in morning compared to a flat plate, whereas larger apex angles reduce difference around noon.
- Azimuth angle has little impact on heat transfer, whereas as Inclination angle rotates towards vertical, net heat transfer is reduced significantly.

- Expand the array to include greater number of elements.
	- Reduce impact of lunar IR heat flux on central surfaces

- Add thermal conduction to model
	- Improve prediction to real-world behaviour and smooth discontinuities between connecting faces.

This research is conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number 13/RC/2077 and has been part funded by the European Regional Development Fund through the SFI Research Centres Programme.

Questions...?

NASA