TFAWS Passive Thermal Paper Session

Optimizing Thermal Radiator Designs Using the Veritrek Software

Lina L. Maricic & R. Scott Miskovish (ATA Engineering, Inc.) Jacob A. Moulton & Derek W. Hengeveld (LoadPath, Inc.)

> Presented By Lina L. Maricic Jacob Moulton

Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA

ANALYSIS WORKSHOP

&

THERNISI

TFAWS LaRC 2019

- Find an alternative method to design thermal radiators of a spacecraft
 - Traditional method: numerous simulations using detailed thermal math models
 - Alternative method: machine learning to create reduced-order models
- One alternative method: using the Veritrek software to optimize thermal radiator designs
 - Using Veritrek to create a reduced-order model (ROM) and explore thermal design space
 - Find optimal design solutions or radiator sizes

- Veritrek is a reduced-order thermal modeling software suite built to work with Thermal Desktop[®]
 - Creation Tool: allows you to easily create a ROM directly from a Thermal Desktop[®] model
 - Exploration Tool: uses the ROM, and allows for rapid thermal analysis and easy results viewing

- A ROM is an accurate surrogate of a high-fidelity model (References 1, 2, and 3)
- Acts as a statistical emulator constructed from high resolution simulations
- Based on intelligent design space sampling and robust data fitting

Gaussian Process Data-fitting

Variation of hyperparameters

TFAWS 2019 - August 26-30, 2019

PX2

PX1

PY1

NY1

- A six-sided box representing a generic spacecraft orbiting on low earth orbit (LEO)
 - Large box made of aluminum honeycomb sandwich panels
 - Small boxes representing electronics made of aluminum
- Spacecraft orbiting parameters:
 - Orbit Planet: earth
 - Orbit Type: beta (β) angle
 - Orbit Period: 6,298 seconds
 - Orbit Altitude: 1,000 km
- Worst Case Hot (WCH): Nadir +Z, Velocity +X, $\beta = 60^{\circ}$
- Worst Case Cold (WCC): Sun –Z, North +Y, $\beta = 0^{\circ}$
- All solutions solved in Thermal Desktop[®] (TD)

Nadir +Z, Velocity +X, $\beta = 60$, No Eclipse. Solar Flux = 1414 W/m². Earth IR Flux = 263. Albedo = 0.35.

TFAWS 2019 - August 26-30, 2019

Worst Cold Case: Sun –Z, North +Y, $\beta = 0$

Sun –Z, North +Y, $\beta = 0$. Solar Flux = 1318 W/m². Earth IR Flux = 215. Albedo = 0.25.

TFAWS 2019 - August 26-30, 2019

Thermal Design Constraints

- Maximum temperatures of electronics in worst case hot (WCH) environment cannot exceed maximum allowable flight temperatures (AFTs) of 40 °C
- Duty cycles of survival powers used to maintain electronics above minimum AFTs in worst case cold (WCC) environment cannot exceed 80%

Each radiator's length is a variable. Radiator's height-to-length ratio is the same as the electronic box footprints.

TFAWS 2019 - August 26-30, 2019

WCH, Steady State Solution, Nominal Radiators

 Maximum temperature is above AFT limit of 40 °C with nominal radiator size

TFAWS 2019 – August 26-30, 2019

WCC, Steady State Solution, Nominal Radiators

 Minimum temperature without heaters is below AFT limit of -20 °C. Survival heaters needed to keep temperatures above AFT min limit.

WCC Heater Powers and WCH Heat Loads

WCC Heater Powers

Thermostat ID/Name	Heater Power (W)	T, Cut-in (°C)	T, Cut-out (°C)	T,set-in (°C)
PY1	55	-21	-19	-20
PY2	40	-21	-19	-20
NY1	55	-21	-19	-20
PX1	80	-21	-19	-20
PX2	20	-21	-19	-20

WCH Heat Load

Electronics	Heat Load (W)
PY1	60
PY2	30
NY1	30
PX1	50
PX2	30
Total	200

Input Variable Name	Description
Radiator NX Lx	Size of the radiator on the –X face of the spacecraft. Ranges from 0.1 to 1.
Radiator NY Lx	Size of the radiator on the $-Y$ face of the spacecraft. Ranges from 0.01 to 0.5.
Radiator1 PX Lx	Size of the first radiator on the $+X$ face of the spacecraft. Ranges from 0.1 to 0.35.
Radiator1 PY Lx	Size of the first radiator on the $+Y$ face of the spacecraft. Ranges from 0.1 to 0.6.
Radiator2 PX Lx	Size of the second radiator on the $+X$ face of the spacecraft. Ranges from 0.1 to 0.5.
Radiator2 PY Lx	Size of the second radiator on the +Y face of the spacecraft. Ranges from 0.1 to 0.25 .

	Name	Nominal Value	Minimum	Maximum	Interpolation Method	Comment
general	Radiator_NX_Lx	1	0.1	1	Continuous	
general	Radiator_NY_Lx	0.35	0.01	0.5	Continuous	
general	Radiator1_PX_Lx	0.25	0.1	0.35	Continuous	
general	Radiator1_PY_Lx	0.35	0.1	0.6	Continuous	
general	Radiator2_PX_Lx	0.4	0.1	0.5	Continuous	
general	Radiator2_PY_Lx	0.25	0.1	0.25	Continuous	
	Case Sets Sum	imary				
	Case Sets Sum	ımary				
	Case Sets Sum Cold_Case Hot_Case	ımary				
Add	Case Sets Sum Cold_Case Hot_Case	imary				
٨dd	Case Sets Sum Cold_Case Hot_Case	imary				
Add	Case Sets Sum	imary				
Add move	Case Sets Sum Cold_Case Hot_Case	imary				
Add	Case Sets Sum Cold_Case Hot_Case	imary				
Add move	Case Sets Sum Cold_Case Hot_Case	imary				
Add move	Case Sets Sum	imary				
Add move	Case Sets Sum	imary				
Add move	Case Sets Sum	imary				

RNRLYSIS WORKSHOP

Output Responses for the Veritrek Creation Tool

Output Response Name	Single Node	Node Group	Max Value
NY Elec Intfc Max Temperature (–Y Face)		X	Х
PX Elec1 Intfc Max Temperature (+X Face)		Х	X
PX Elec2 Intfc Max Temperature (+X Face)		X	X
PY Elec1 Intfc Max Temperature (+Y Face)		X	X
PY Elec2 Intfc Max Temperature (+Y Face)		X	X
Heater NY1.1 Max Power (-Y Face)	Х		X
Heater PX1.1 Max Power (+X Face)	Х		X
Heater PX2.1 Max Power (+X Face)	Х		X
Heater PY1.1 Max Power (+Y Face)	Х		X
Heater PY2.1 Max Power (+Y Face)	X		X

Computation Time for ROM Creation Iterations

ROM Creation Iteration	# Training Runs	Time to Generate Training Data*	Time to Test the ROM	Total Time for ROM Creation			
1	66	17 hours	4 hours	~ 1.0 days			
2	128	32 hours	4 hours	~ 1.5 days			
3	3 256 64 hours		8 hours	~ 4.0 days			
* The system used to generate the ROM was a Windows 7 HP Z440 workstation							

running AutoCAD 2018 and Thermal Desktop® 6.0 Patch 21. The processor on this system was a 12-core Intel Xeon CPU at 3GHz

Lengthscale parameter (l) controls the smoothness of the fitting function

Veritrek's data-fitting algorithm automatically optimizes the model parameters, but provides user options for setting the range of lengthscales and number of steps within that range to evaluate.

ROM vs. TD Output Prediction Comparison

ENERGYTRACKER_NY1.1 Maximum Temperature

Iteration 3 ROM

TFAWS 2019 - August 26-30, 2019

NAS

ROM vs. TD Output Prediction Comparison

PXElec2_Intfc Maximum Temperature

ENERGYTRACKER_PX2.1 Maximum Temperature

Iteration 3 ROM

TFAWS 2019 - August 26-30, 2019

NAS

Iteration 3 ROM

NA SA

Residuals between ROM and TD Predictions (24 Test Runs)

< 1 C (or W) < 3 C (or W)

Output Response Name	Mean of the Residual	Standard Deviation of the Residual
NY Elec Intfc Max Temperature (-Y Face)	-0.133 °C	0.764 °C
PX Elec1 Intfc Max Temperature (+X Face)	0.287 °C	1.496 °C
PX Elec2 Intfc Max Temperature (+X Face)	-0.019 °C	0.615 °C
PY Elec1 Intfc Max Temperature (+Y Face)	-0.197 °C	0.832 °C
PY Elec2 Intfc Max Temperature (+Y Face)	-0.928 °C	2.109 °C
Heater NY1.1 Max Power (-Y Face)	0.178 W	0.742 W
Heater PX1.1 Max Power (+X Face)	0.204 W	0.746 W
Heater PX2.1 Max Power (+X Face)	-0.021 W	0.443 W
Heater PY1.1 Max Power (+Y Face)	-0.007 W	0.710 W
Heater PY2.1 Max Power (+Y Face)	-0.094 W	0.476 W

Note: Different number of test runs may produce slightly different numerical residual metrics, but the ROM does not change. Differing residuals in this case, is a symptom of testing closer to the edges of the design space.

Filtered Optimized Solution(s)

ATA Preliminary Optimal Design

Radiator Name	Optimal Size (m)	Allowable Tolerance
Radiator NX Lx	0.898	+/-0.05
Radiator NY Lx	0.262	+/-0.05
Radiator1 PX Lx	0.327	+/-0.02
Radiator1 PY Lx	0.462	+/-0.03
Radiator2 PX Lx	0.440	+/-0.06
Radiator2 PY Lx	0.249	+/-0.001

LoadPath Preliminary Optimal Design

Radiator Name	Optimal Size (m)	Allowable Tolerance
Radiator NX Lx	0.950	+/- 0.050
Radiator NY Lx	0.320	+/- 0.060
Radiator1 PX Lx	0.330	+/- 0.020
Radiator1 PY Lx	0.435	+/- 0.025
Radiator2 PX Lx	0.410	+/- 0.030
Radiator2 PY Lx	0.250	+/- 0.005

Filtered through

30,000 design

points using a

Python script

These two optimal designs are essentially the same.

All design requirements were met except for PX2 survival power duty cycle is larger than 80%

Optimal Design	NY Elec Intfc Max Temp (-Y Face)	PX Elec1 Intfc Max Temp (+X Face)	PX Elec 2 Intfc Max Temp (+X Face)	PY Elec1 Intfc Max Temp (+Y Face)	PY Elec2 Intfc Max Temp (+Y Face)
Hot Case Veritrek Predict	39.3 °C	30.6 °C	28.4 °C	28.5 °C	33.8 °C
Hot Case TD Predict	36.8 °C	28.7 °C	27.9 °C	25.2 °C	33.0 °C
Difference	2.5 °C	1.9 °C	0.5 °C	3.3 °C	0.8 °C
Optimal Design	Heater NY1.1 Max Power	Heater PX1.1 Max Power	Heater PX2.1 Max Power	Heater PY1.1 Max Power	Heater PY2.1 Max Power
Cold Case Veritrek Predict	26.6 W	31.2 W	14.9 W	41.8 W	2.3 W
Cold Case TD Predict	26.3 W	23.1 W	19.6 W	35.9 W	9.7 W
Difference	0.3 W	8.1 W	-4.7 W	5.9 W	-7.4 W
Optimal Design			Duty Cycle		
Cold Case Veritrek Predict	48.4%	39.0%	74.5%	76.0%	5.8%
Cold Case TD Predict	47.8%	28.9%	97.8%	65.2%	24.4%
Difference	1%	10%	-23%	11%	-19%

Violation of duty cycle due to ROM under-estimating PX2's survival energy

Radiator

NX Lx

0.95

0.05

Orbits

Cold Case

Radiator

0.32

0.32

NY Lx

Radiator1

0.33

0.33

PX Lx

Radiator1

0.435

0.435

PY Lx

Further Veritrek Analysis Provides Final Optimal Design

Screening Analysis shows we only needed to slightly alter Radiator2 PX Lx to find final optimal design

Radiator2

0.38

0.20

PX Lx

Point Analysis allows instant execution of design _____ change

	Radiator Name	Optimal Size (m)	Allowable Tolerance
	Radiator NX Lx	0.950	+/- 0.050
Final	Radiator NY Lx	0.320	+/- 0.060
Ontimal	Radiator1 PX Lx	0.330	+/- 0.020
opunui D	Radiator1 PY Lx	0.435	+/- 0.025
Design	Radiator2 PX Lx	0.380	+/- 0.030
	Radiator2 PY Lx	0.250	+/- 0.005

PΧ

Elec1

Intfc

Max

[C]

Temp.

-8.291

32,459

Elec

Intfc

Max

[C]

Temp.

-15.709

40.248

Radiator2

0.25

PY Lx

Design points filtering process should have given a small tolerance beyond requirement or included design points that are slightly above maximum temperature of 40 $^\circ\mathrm{C}$

Optimal Design	NY Elec Intfc Max Temp (-Y Face)	PX Elec1 Intfc Max Temp (+X Face)	PX Elec 2 Intfc Max Temp (+X Face)	PY Elec1 Intfc Max Temp (+Y Face)	PY Elec2 Intfc Max Temp (+Y Face)
Hot Case Veritrek Predict	40.2 °C	32.6 °C	34.3 °C	32.6 °C	36.2 °C
Hot Case TD Predict	38.1 °C	30.6 °C	33.1 °C	26.2 °C	34.4 °C
Difference	2.2 °C	2.0 °C	1.2 °C	6.4 °C	1.8 °C
Optimal Design	Heater NY1.1 Max Power	Heater PX1.1 Max Power	Heater PX2.1 Max Power	Heater PY1.1 Max Power	Heater PY2.1 Max Power
Cold Case Veritrek Predict	32.4 W	33.0 W	9.3 W	39.3 W	2.8 W
Cold Case TD Predict	26.4 W	23.9 W	14.7 W	35.9 W	9.8 W
Difference	6.0 W	9.1 W	-5.4 W	3.4 W	-7.0 W
Optimal Design			Duty Cycle		
Cold Case Veritrek Predict	58.9%	41.3%	46.5%	71.5%	7.0%
Cold Case TD Predict	48.0%	29.9%	73.5%	65.3%	24.5%
Difference	10.9%	11.4%	-27%	6.2%	-17.5%

WCH Temperature Contours with Final Optimal Design

All Components

Electronics Only

Temperature [C]. Time = 6240 sec

NASA

- ATA explored an alternative design method to find optimal radiator size
- ATA created a reduced-order model (ROM) using Veritrek, and tested this ROM to verify its accuracy
- Fidelity of the ROM depends on number of training data simulations, such that a higher fidelity ROM requires more computation time
- Design and verification of the thermal system in a variable environment was executed in real time in Veritrek Exploration Tool
- An optimal design solution was reached in about five days using Veritrek, compared to a month using traditional thermal analysis techniques

- Hengeveld, D. W., & Biskner, A. (2017). Enhanced data exploration through Reduced-Order Models. 47th International Conference on Environmental Systems. Charleston, SC.
- 2. Sacks, J. W. (1989). Design and analysis of computer experiments. *Statistical science*, 409-423.
- Tyler M. Schmidt, S. C. (2018). Thermal Design of a Mars Helicopter Technology Demonstration Concept. *ICES 2018*. Albuquerque.

Questions?

