TFAWS Passive Thermal Paper Session

Design and Test of a Structurally-Integrated Heat Sink for the Maxwell X-57 High Lift Motor Controller

Ryan Edwards & Andrew Smith NASA Glenn Research Center

> Presented By Ryan Edwards

Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA

TFAWS LaRC 2019

ANALYSIS WORKSHOP

 \mathbf{g}

THERMAN

Background

• Fully Electric Aircraft Demonstrator

- Two 60 kW Cruise Motors
- Twelve 12kW High Lift Propulsors
	- Primarily used for lift augmentation for take-off and landing
- Li Battery powered DC bus

Distributed High Lift System

- Enables low profile wing shape, reducing unnecessary drag during cruise
- Motor controllers and inverters are located in the nacelle with each motor
- Inactive for majority of flight, driving the need for low mass and drag

High Lift Propulsor Assembly

- Generalized Intelligent Motor Controller (GIMC)
- OML Cooled proof of concept for
	- $-10-14$ KW

GiMC-Heist Test Configuration

• Thermal

- Dissipate controller and inverter waste heat for a 12 kW high lift system
- Prevent components from exceeding their maximum operating temperatures
	- Particularly the High Power SiC MOSFETs
		- $-$ 100C Maximum Tj (150 C $-$ 50 C de-rating)

- Qualification testing per DO-160G
- Worst Case Hot Environment
	- Stopped on runway with HLP at max power
		- 45C Ambient, $50 \text{ W/m}^2\text{C}$ (Prop Wash) Convection
- Worst Case Cold Environment
	- Cruise with HLP off
		- -25C Ambient, 110 W/m²C Convection
- Qualification Test Margin

 $± 15C$

Environmental Temperature Extremes for Qualification Testing -40C to +60C

	Duration	High Lift Controller	
	(Seconds)	Input Power (kW)	
		97.0% Efficiency	
Phase			1 Motor 12 Motors
Taxi from NASA	600		
TO Checklist	120		
Cruise Runup	30		
HLP Runup	30	11.4	136.7
Flight go/no-go	30		
Ground roll	10	11.4	136.7
Climb to 1500'	90	5.7	68.4
Cruise Climb 1	540		
Cruise	300		
Descent to 1500'	450		
Final approach	180	5.7	68.4
Go Around to 1500	90	5.7	68.4
Approach pattern	90		
Final approach	180	5.7	68.4
Rollout and turnoff	60		
Taxi to NASA	600		
Total (< kWh Wh)	3400	1.0	11.8

Mod 4 HLP Flight Profile

Superimposed Envelope up to 15k ft

Initially greatly over weight

- HEIST was prepackaged (multiple thermal interfaces)
- Separately designed thermal, structural, and power electronics
- Rapid redesign process
	- Weekly iterations
		- Quick turnaround analysis tools
	- In house controller design greatly increased electronics efficiency
		- Enabled by subsystem cooperation
- Structural Thermal design iterations
	- Competing requirements
	- Very low mass margins

NASA

High Power Electronics Thermal Design

• **High Power Electronics**

- Thermally sinked to external flow
- Aluminum external sink conforms to OML
- SiC MOSFETs are distributed around the circumference of the sink to minimize temperature gradient
- Designed External Sink Surface Area
	- 640 cm^2

NH SA

• **Low Power Electronics (LPE)**

- Two copper thermal planes on each PCB to distribute heat
	- 1.4 mil (1 oz copper)
- PCBs are thermally linked together through aluminum standoffs which are in contact with the thermal planes
- Secondary Low Power Heat Sink with heat pipe conductor
	- Low Power Sink is thermally insulated from High Power Sink with G10 standoffs
	- Sintered Wick Copper Heat Pipe
		- Water working fluid
		- 27W Capacity
		- 30 to 120C Temperature range
- Additional convection to internal nacelle environment

Low Power Electronics with G10 spacers

Low Power Heat Sink and Heat Pipe

NA'S

Thermal Analysis

Convection Heat Transfer Characterization

• **RANS (SST) Turbulence Model**

- Enhanced wall treatment for heat transfer
- Design points based on uniform inlet temperature, speed, and dissipated power.

Thermal Analysis

Convection Heat Transfer Characterization

Printed Circuit Board Thermal Analysis & Model ANSE

- All boards have two 2oz copper thermal layers
	- 1.4 mil thickness
	- Additional ground and bus planes will help distribute heat
- Thermal vias located throughout boards
- **Heat Pipe interface boundary**
	- 65C
- High Temperature Sink boundary
	- 72C
- Natural Convection
	- 5W/m²C @ 60C
- Majority of active components have maximum operating ambient air temperature limits
	- Results show we can keep all components below their maximum ambient temperature limit
		- Conservative due to actual component maximum operating temperature being higher than ambient operating temperature

PCB Thermal Model Component Results

High Power Heat Sink Thermal Analysis

- Analysis assumptions
	- FETs
		- θ_{ic} = 0.27 C/W
		- Junction mass = 5g
		- Junction $c_p = 0.9 \text{ J/g}^{\ast}C$
	- Heat Sink
		- Mass = 380g
		- $C_p = 0.9 \text{ J/g}^*C$
		- Surface Area = 640 cm^2
	- Environment
		- 20s/90s Transient
			- $-$ Temperature = 60C
			- $-$ Convection Coefficient = 50 W/m²C
		- Flight Profile
			- Worst case flight maximums

Mod 4 HLP Flight Profile from AFRC

 $θ$ ј-с

Length

Width

C# Model GUI

Results

Transient results with heat sink mass, thermal resistance, temperature, and convection modeled at profile power

Testing

Steady State Thermal Extremes

- Sea level Thermal Chamber
- -40C to +60C Extremes
- Functional & Workmanship Testing
- Water cooled test heat sink

- **Transient Wind Tunnel Testing**
	- Sea level & Altitude (15kft) Testing
	- Flight Heat Sink performance and Model Validation
	- Functional testing at worst case conditions

TFAWS 2019 – August 26-30, 2019 17

Wind Tunnel Test Unit Build

- Additively manufactured aluminum heat sink
- 3D printed forward Nacelle and Motor Section analog

NA SA

Testing Results (Transient)

Transient Test Case 4

- 20s 100% power
- 90s 50% power
- Environment
	- 20m/s
	- 12.7 psi (4000 ft)
	- 60 degC

NH S

Testing Results (Steady State)

NH S

- Developed models for heat transfer characterization and transient modeling of passive 'OML' cooled power electronics
- Designed, built, and tested well-integrated multidiscipline motor controller package for X57
- Completed design successfully met all operational and environmental requirements at worst case conditions