TFAWS Passive Thermal Paper Session

Thermal Characterization of 3D Printed Lattice Structures Travis Belcher, NASA MSFC Greg Schunk, NASA MSFC

Presented By Travis Belcher

ANALYSIS WORKSHOP

 8_k

THERMAN

TFAWS LaRC 2019

Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA

- Lattice Structures
- Experiment Design
- Modeling Correlations
- Future Work

NA SA

ECLSS 4-Bed Molecular Sieve (4BMS-X) Heater Plate

TFAWS 2019 – August 26-30, 2019 3

NH ST

- **Lattice Structures are** repeating patterns which can be applied to Additively Manufactured (AM) parts
- Four lattice topologies were selected for assessment (1)
	- Dode Medium 13% Relative Density (%RD)
	- Diamond 20%RD
	- Octet Truss 30%RD
	- Rhombic Dodecahedron 20%RD
- Two unit cell sizes were down-selected
	- Coarse: 5mm
	- Fine: 2mm

Dode Medium (13%RD)

Diamond (20%RD)

Octet Truss (30%RD)

Rhombic Dodecahedron (20%RD)

Advantages

- Reduced mass, retain stiffness
- Variable relative density and surface area
- Tailorable thermal conductivity (*k*) to specific applications

Limitations

- Computationally expensive for analytical modeling
- Limited material property data (traditional properties are unreliable)

Lattice Regen Chamber Demo

Early Modeling Attempts

- **Steady State**
- **Dimensions**
	- Width: 20mm
	- Length: 20mm
	- Thickness: 0.98mm
- Assumed Constant Aluminum Properties
	- $k = 205 W/m-K$
	- $-$ C_p = 0.9 J/g-K
	- $-$ ρ = 2700 kg/m³

NH ST

Effective Thermal Conductivity ()

$$
k_{eff} = \frac{QL}{A\Delta T}
$$

- Q Heat Flux
- A Cross-Sectional Area
- L- Length
- ΔT Differential Temperature

Thermal Diffusivity (α)

$$
\alpha = \frac{k_{eff}}{\rho_{eff}C_p}
$$

 C_p - Specific Heat Capacity

Effective Density (ρ_{eff} **)**

$$
\rho_{eff} = \frac{M_{model}}{V_{max}}
$$

 M_{model} - Mass of the model V_{max} - Volume of bounding envelope

Solid Dode Medium Dode Thick

Effective Thermal Conductivity vs. Void Fraction

Modeling Shortcomings

- Models which contain lattice only come in .stl (Standard Tessellated Language) format
	- .stl (Right) is a specialized file type for 3D Printers
	- Converts a CAD solid into a hollow shape bounded by triangles with a normal direction
- Computationally expensive
	- Radiation effects are difficult to usefully incorporate

.stl File Example (2)

- Convection/CFD has not been attempted, could be problematic
- Limited material property data (traditional properties are unreliable)

NH ST

Experiment Design

- Internal funding was obtained at Marshall Spaceflight Center (MSFC) to experimentally measure the thermal conductivity through lattice structures and non-fully dense solids
- The experiment will create a capability unique to **MSFC**
- This experiment is currently in the design/procurement phase

- Well established standards are available to determine the *k* of homogeneous materials
	- ASTM E1225-13 Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique
	- ASTM D5470-17 Thermal Transmission Properties of Thermal Conductive Insulation Materials
- Measuring *k* through complex geometries/nonhomogenous materials has not been standardized
- Notable changes:
	- Much smaller samples (max ~30x30x30mm cube)
	- Samples will not be homogenous
	- No guard will be used (excessive with upper and lower meter bars)
	- $-$ Test will occur in vacuum (10⁻² to 10⁻³ torr) to mitigate convection
	- Meter bar conductivity will be selected based on estimated sample conductivity (not necessarily >50 W/m-K)

Experiment Design

Heater

- Several heaters are being considered
- 20 watts(W) or less of power will be applied to the experiment
- Instrumentation
	- Meter bars and samples will be instrumented with at least three 4-wire RTDs
	- Chiller has built in temperature measurement and control to maintain 20° C \pm 0.1 up to 250W
- Samples
	- At least three different sample thicknesses will be measured at least three times for repeatability and reliability

Modeling Correlations

- Correlated thermal math models of lattice structures are needed to inform the design and optimization of specific applications utilizing additive manufacturing.
- Depending upon the application, the thermal model may need to consider all modes of heat transfer: conduction, radiation and convection to a stationary or moving fluid.
- Radiation and convection may be computationally prohibitive for large or complex geometries.
- A simplified network method to model conduction through a lattice structure is illustrated.
- An individual lattice cell may be parsed into nodes and conductors. The nodes represent "junction" points where the beams that define the lattice structure meet.
- Temperature is computed via an energy balance at each node based on conductive heat transfer through the beams.

- Finish procurement
- Build test system/apparatus
- Verify system with sample of known conductivity
- Test initial samples
- Correlate model results with experimental data
- Numerous potential applications including Cryogenic Fluid Management and Nuclear Thermal Propulsion

References

- 1) Mireles, O. R. (2018). *Thermal, Fluid, Mechanical, and Microstructural Property Characterization of Additively Manufactured Lattice Structures*. Retrieved from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20 180006367.pdf
- *2) Working with File Types*. (2019). Retrieved from: https://www.simplify3d.com/support/articles/workingwith-file-types/

Backup Slides

Backup Slides

