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ABSTRACT  

The physics that govern fluid flows are described by the conservation laws along with 
the appropriate initial and boundary conditions. Further, in fluid dynamics, the conservation 
laws are represented by a set of partial differential equations which do not readily lend 
themselves to analytical solutions. Nonetheless, the advent of computers allowed for the 
creation of Computational Fluid Dynamics (CFD), which is a field of study that is mainly focused 
on the numerical solution of these conservation laws. Today, these numerical solutions fall into 
one of the two major classes of numerical techniques: Finite Volume Method (FVM) and Finite 
Difference Method (FDM). Recently, a hybrid numerical technique, called the Integro-
Differential Scheme (IDS), was developed and applied to a few problems without being fully 
tested. The IDS technique is worthy of a full technical evaluation as its preliminary results are 
impressive. As with any numerical technique, the IDS error capability must be rigidly analyzed, if 
the conservation principles, as well as, the physics capturing capability are to be credible. In lieu 
of analytical methods, this research seeks to study and quantify the IDS error behavior through 
an innovative numerical approach. Herein, selective 1D fluid dynamic problems are solved 
analytically and numerically with the use of the IDS technique. Further, orders of magnitude 
error analysis are conducted in both cases, and the results compared. In this research project, 
specialized numerical spline routines were developed that allows the IDS numerical solutions to 
be used as ‘quasi-exact’ solutions. This process facilitated the appropriate comparison of the 
two classes of solutions: analytical and ‘quasi-exact’ solutions. In this paper, the 
aforementioned error analysis procedure is described. In addition, to illustrate its effectiveness, 
a series of Quasi-1D convergent-divergent nozzle problems are analyzed, and the results 
reported herein. The numerical solution is compared to known values at specific locations in 
the nozzle to validate its use as ‘quasi-exact’. The results show that the maximum error was 
6.78% thus validating the use of the numerical solution as ‘quasi-exact’. 

INTRODUCTION 

With the advent of the modern computers came numerous advances in physical problems 
involving fluid flow.  The non-existence of analytical solutions to the differential equations 
governing fluid flow ceased to be a limitation to our ability to understand physics. Numerical 
schemes such as Finite difference methods(FDM), Finite volume methods(FVM) and Integro-
Differential Scheme (IDS)[1] have been developed to solve the Navier Stokes Equations. However, 
these schemes inherently have the ability to introduce errors. The conventional way of measuring 
the accuracy of the solutions is to compare the numerical solution to an analytical exact solution 
or in some cases to experimental results. Analytical exact solutions however are not readily 
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available for numerous problems and boundary conditions so experimental results suffice though 
they may be expensive to conduct. The purpose of this paper is to describe the implementation 
of a new methodology to obtain a “Standard Solution” from our numerical results that can be 
considered the numerical exact solution. The numerical exact solution then takes the place of the 
analytical solution for error analysis. Outlined in Section 1 are the set of conservation equations 
that govern quasi 1-D fluid flow. Section 2 talks about choosing an appropriate numerical code 
that can solve sets of differential equations with no exact solution. Followed by section 3 which 
describes a standardized way of creating a Numerical Exact solution. Section 4 follows the 
principle of demonstrating that the numerical standard solution is good enough to replace the 
Exact Analytical Solution.  

SECTION 1 GOVERNING DIFFERENTIAL EQUATIONS- QUASI 1D NAVIER STOKES EQUATIONS 

The set of Navier-Stokes equations govern the physics of all fluid flows. To obtain a unique 
solution to a problem however, initial and boundary conditions must be specified. For the 
purpose of this paper, we use the quasi 1D form of the Navier-Stokes equations as applied to 
converging-diverging nozzles. This is given by  

Conservation of Mass : 

 

                                              
𝜕(𝜌𝐴)

𝜕𝑡
+
𝜕(𝜌𝑢𝐴)

𝜕𝑥
= 0

 
                                                                               (1) 

Conservation of Momentum : 

                                
𝜕(𝜌𝑢𝐴)

𝜕𝑡
+
𝜕[(𝜌𝑢2 + 𝑝)𝐴]

𝜕𝑥
− 𝑝

𝑑𝐴

𝑑𝑥
= 0                                                           (2) 

Conservation of Energy : 

   

                                     
𝜕(𝜌𝑒𝑇𝐴)

𝜕𝑡
+
𝜕[(𝜌𝑒𝑇 + 𝑝)𝑢𝐴]

𝜕𝑥
= 0

 
                                                                (3) 

In order to reduce equations (1-3) to non-dimensional form, we introduce the following 
definitions.  

{
  
 

  
 

 

𝑇̅ =
𝑇

𝑇𝑜
           𝜌̅ =

𝜌

𝜌𝑜
         𝑃̅ =

𝑃

𝑃𝑜
        𝑥̅ =

𝑥

𝐿
  
 

𝑢̅ =
𝑢

𝑎𝑜
           𝑡̅ =

𝑡

𝐿
𝑎𝑜⁄
          𝑒̅ =

𝑒

𝑒𝑜
          𝐴̅ =

𝐴

𝐴∗
 

                                                                   (4) 
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Also the total speed of sound (𝑎𝑜) and internal energy(𝑒𝑜) at total conditions is defined as  

  𝑎𝑜 = √𝛾𝑅𝑇𝑜    →     𝑎𝑜
2 = 𝛾𝑅𝑇𝑜    →    𝑅𝑇𝑜 =

𝑎𝑜
2

𝛾
                                                        (5) 

      

                             𝑒𝑜 = 𝑐𝑣𝑇𝑜 =
𝑅𝑇𝑜

(𝛾 − 1)
                                                                                        (6) 

 

The conservation equations become  

Conservation of Mass : 

                                                   
𝜕(𝜌̅𝐴̅)

𝜕𝑡̅
+
𝜕(𝜌̅𝑢̅𝐴̅)

𝜕𝑥̅
= 0                                                              (7) 

Conservation of Momentum : 

                        
𝜕(𝜌̅𝑢̅𝐴̅)

𝜕𝑡̅
+
𝜕

𝜕𝑥̅
[𝜌̅𝐴̅ (𝑢̅2 +

𝑇̅

𝛾
)] −

𝜌̅𝑇̅

𝛾

𝑑𝐴̅

𝑑𝑥̅
= 0                                                    (8) 

 

Conservation of Energy : 

                           
𝜕

𝜕𝑡̅
(𝜌̅𝑒̅𝑇𝐴̅)+

𝜕
𝜕𝑥̅

[𝜌̅𝑢̅𝐴̅(𝑒̅𝑇+ 𝑇̅)] = 0                                                                   (9) 

 

Where       𝑒̅𝑇 ≝
𝑒̅

(𝛾−1)
+
𝛾

2
𝑢̅2  

In vector form, the non-dimensional form of te unsteady Quasi 1-D Navier Stokes Equations    
(7-9) can be written in te form iven by equation (10) 

 

                        
𝜕𝑈

𝜕𝑡
+ 
𝜕𝐹

𝜕𝑥
− 𝐺 = 0                                                                                          (10) 

 

Where the vectors, U, F and G are defined as 
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  𝑈 =

[
 
 
 
 
 

 
𝜌
 
𝐴

𝜌𝑢𝐴
 

𝜌𝑒𝑇𝐴
 ]
 
 
 
 
 

     , 𝐹 =

[
 
 
 
 
 
 
 

  
𝜌𝑢𝐴
 
   

𝜌𝐴 (𝑢2 +
𝑇

𝛾
)

  
𝜌𝑢𝐴(𝑒𝑇 + 𝑇)

 
 
 ]

 
 
 
 
 
 
 

 and  𝐺 =

[
 
 
 
 
 
 
 

  
0 
   

𝜌𝑇

𝛾

𝑑𝐴

𝑑𝑥  
0
 
 
 ]
 
 
 
 
 
 
 

 

 

SECTION 2 CHOOSING AN APPROPRIATE NUMERICAL SCHEME – INTEGRAL-DIFFERENTIAL 
SCHEME 

The IDS was chosen as the appropriate numerical scheme to demonstrate this new 
methodology because of its success in overcoming limitations of well-established schemes and 
obtaining accurate solutions that most conventional schemes are not able to[1]. The IDS is a 
hybrid scheme that combines the advantages of both the finite difference methods and the 
finite volume methods [2], that is, it focuses on the evolution of fluxes hence maintaining the 
conservative nature of the governing equations, and the equations are easily discretized based 
on finite difference methods. For the 2-D version of it, the control volume is made up of 4 cells 
as shown in Error! Reference source not found.. The time derivatives at each cell center is 
evaluated using the mean value theorem. And then the time derivative for the control volume 
is evaluated at the center of the volume by an arithmetic average of the 4 neighboring cells. 
This averaging procedure is done consistently throughout the scheme.  

 

Figure 1. 2-Dimensional IDS control volume. 

 

For this paper however, the quasi 1-D form of the IDS scheme is used.  
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SECTION 3 STANDARD SOLUTION ( NUMERICALLY EXACT SOLUTION) 

To obtain the standard solution, the quasi 1-D IDS was applied to 5 pairs of nozzle flow 
problems of varying nozzle geometries. For each pair, the initial condition was kept constant 
but the boundary conditions were altered so produce either an isentropic solution or a shock 
solution in the nozzle.  This is to enable the testing of the scheme for both smooth and 
discontinuous solutions. Discontinuities are known to introduce errors into solutions which 
tend to grow with the evolution of the solution towards steady state.  

 

3.1 Choosing Different Nozzle Geometries and Problems  

1. Anderson nozzle [3] 

Figure 2 and Figure 3 show the Anderson nozzle subject to Isentropic and Shock 

conditions respectively. 

𝑨(𝒙) = 𝟏. 𝟎 + 𝟐. 𝟐 (𝒙 − 𝟏. 𝟓)𝟐 

Problem ID1: Anderson Nozzle Isentropic Flow Problem ID2: Anderson Nozzle Shock Flow 

      

Figure 2: Anderson Nozzle Isentropic Flow  Figure 3: Anderson Nozzle for Shock flow 

 

Initial Condition 

Isentropic           Shock 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟓𝟗

𝝆𝑨⁄

 
𝟏. 𝟎

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

        𝟎 ≤ 𝒙𝒃𝒂𝒓 < 𝟎. 𝟓 ,                                                                

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟓𝟗

𝝆𝑨⁄

 
𝟏. 𝟎

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

        𝟎 ≤ 𝒙𝒃𝒂𝒓 < 𝟎. 𝟓 , 

  

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 < 𝟏.𝟓                 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 < 𝟏. 𝟓 
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[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒙𝒃𝒂𝒓 ≥ 𝟏. 𝟓                             

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒙𝒃𝒂𝒓 ≥ 𝟏. 𝟓  

     Inflow Conditions                         Outflow Conditions                                      Inflow Conditions                        Outflow Conditions 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 − 𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

           

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 

 
𝟐. 𝟎𝝆(𝒊𝒎𝒂𝒙−𝟏) − 𝝆(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝒖(𝒊𝒎𝒂𝒙−𝟏) − 𝒖(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝑻(𝒊𝒎𝒂𝒙−𝟏) − 𝑻(𝒊𝒎𝒂𝒙−𝟐)

 ]
 
 
 
 
 
 

                         

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 − 𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

                

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 

 
𝜌
𝑖𝑚𝑎𝑥−1 
 

 0.1520
 

𝑇𝑖𝑚𝑎𝑥−1
 ]

 
 
 
 
 
 

 

 

 

 

2. Absolute Nozzle  

The Absolute nozzle is a modification of the Anderson nozzle to produce acute change in 

gradient at the throat of the nozzle. Figure 4 and Figure 5 show the Absolute nozzle 

subject to Isentropic and Shock conditions respectively. 

 

𝑨(𝒙) = 𝟏. 𝟎 + 𝟓. 𝟑 𝒂𝒃𝒔||𝒙 − 𝟏. 𝟓|| 

 

Problem ID3: Absolute Nozzle Isentropic Flow Problem ID4: Absolute Nozzle Shock Flow 

      

Figure 4: Absolute Nozzle Isentropic Flow  Figure 5: Absolute Nozzle for Shock flow 
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Initial Condition 

Isentropic           Shock 

              

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟓𝟗

𝝆𝑨⁄

 
𝟏. 𝟎

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

        𝟎 ≤ 𝒙𝒃𝒂𝒓 < 𝟎.𝟓 ,                                                       

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟓𝟗

𝝆𝑨⁄

 
𝟏. 𝟎

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

        𝟎 ≤ 𝒙𝒃𝒂𝒓 < 𝟎. 𝟓 , 

        

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 < 𝟏.𝟓                          

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎.𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎.𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓

< 𝟏. 𝟓 

  

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒙𝒃𝒂𝒓 ≥ 𝟏. 𝟓                             

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒙𝒃𝒂𝒓 ≥ 𝟏. 𝟓  

     Inflow Conditions                        Outflow Conditions:                                      Inflow Conditions                        Outflow Conditions 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 − 𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

           

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 

 
𝟐. 𝟎𝝆(𝒊𝒎𝒂𝒙−𝟏) − 𝝆(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝒖(𝒊𝒎𝒂𝒙−𝟏) − 𝒖(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝑻(𝒊𝒎𝒂𝒙−𝟏) − 𝑻(𝒊𝒎𝒂𝒙−𝟐)

 ]
 
 
 
 
 
 

                    

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 −𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

                    

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 

 
𝜌
𝑖𝑚𝑎𝑥−1 
 

 0.1520
 

𝑇𝑖𝑚𝑎𝑥−1
 ]
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3. Feng Nozzle [3] 

Figure 6 and Figure 7 show the Feng nozzle subject to Isentropic and Shock conditions 

respectively. 

𝑨(𝒙) = 𝟏. 𝟎 +   𝟐. 𝟐(𝒙 − 𝟏. 𝟓𝟎)𝟐       𝒇𝒐𝒓 𝒙 ≤ 𝟏. 𝟓 

𝑨(𝒙) = 𝟏. 𝟎 + 𝟎. 𝟐𝟐𝟐𝟑(𝒙 − 𝟏. 𝟓𝟎)𝟐     𝒇𝒐𝒓 𝒙 > 𝟏. 𝟓 

 

Problem ID5: Feng Nozzle Isentropic Flow  Problem ID6: Feng Nozzle Shock Flow 

      

Figure 6: Feng Nozzle Isentropic Flow  Figure 7: Feng Nozzle for Shock flow 

 

Initial Condition 

Isentropic           Shock 

         

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟓𝟗

𝝆𝑨⁄

 
𝟏. 𝟎

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

        𝟎 ≤ 𝒙𝒃𝒂𝒓 < 𝟎. 𝟓 ,                                                       

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟓𝟗

𝝆𝑨⁄

 
𝟏. 𝟎

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

        𝟎 ≤ 𝒙𝒃𝒂𝒓 < 𝟎. 𝟓 , 

        

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 < 𝟏.𝟓             

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎.𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎.𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 < 𝟏. 𝟓 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒙𝒃𝒂𝒓 ≥ 𝟏. 𝟓                             

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)
 

𝟎. 𝟓𝟗
𝝆𝑨⁄

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒙𝒃𝒂𝒓 ≥ 𝟏. 𝟓  
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     Inflow Conditions                        Outflow Conditions:                                      Inflow Conditions                        Outflow Conditions 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 − 𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

           

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 

 
𝟐. 𝟎𝝆(𝒊𝒎𝒂𝒙−𝟏) − 𝝆(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝒖(𝒊𝒎𝒂𝒙−𝟏) − 𝒖(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝑻(𝒊𝒎𝒂𝒙−𝟏) − 𝑻(𝒊𝒎𝒂𝒙−𝟐)

 ]
 
 
 
 
 
 

                        

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 − 𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

                  

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 

 
𝜌(𝑖𝑚𝑎𝑥−1)

 
0.48

 
𝑇(𝑖𝑚𝑎𝑥−1)

 ]
 
 
 
 
 
 

 

 

 

4. Hoffmann Nozzle [4] 

Figure 8 and Figure 9 show the Hoffmann nozzle subject to Isentropic and Shock 

conditions respectively. 

𝑨(𝒙) = 𝟏. 𝟓𝟔𝟒𝟑 + 𝟎. 𝟑𝟖𝟖𝟑𝐭𝐚𝐧𝐡 (𝟖𝒙 − 𝟒) 

 

Problem ID7: Hoffmann Nozzle Isentropic Flow Problem ID8: Hoffmann Nozzle Shock Flow 

    

Figure 8: Hoffmann Nozzle for Isentropic Flow Figure 9: Hoffmann Nozzle for Shock Flow 

 

Initial Condition 

Isentropic           Shock 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟑𝟗𝟓
 

𝟏. 𝟓 × √𝟎. 𝟔𝟖𝟗𝟕
 

𝟎. 𝟔𝟖𝟗𝟕
 ]

 
 
 
 
 
 
 

           𝟎 ≤ 𝑿𝒃𝒂𝒓 ≤ 𝟏                                                               

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟑𝟗𝟓
 

𝟏. 𝟓 × √𝟎. 𝟔𝟖𝟗𝟕
 

𝟎. 𝟔𝟖𝟗𝟕
 ]

 
 
 
 
 
 
 

           𝟎 ≤ 𝑿𝒃𝒂𝒓 ≤ 𝟏    
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Isentropic            Shock 

  

     Inflow Conditions                         Outflow Conditions:                                      Inflow Conditions                        Outflow Conditions 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝟏

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟑𝟗𝟓
 

𝟏. 𝟓 × √𝟎. 𝟔𝟖𝟗𝟕
 

𝟎. 𝟔𝟖𝟗𝟕
 ]

 
 
 
 
 
 
 

                

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝑰𝒎𝒂𝒙

𝒏

= 𝟐

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝑰𝒎𝒂𝒙−𝟏

𝒏

−

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝑰𝒎𝒂𝒙−𝟐

𝒏

        

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝟏

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟑𝟗𝟓
 

𝟏. 𝟓 × √𝟎. 𝟔𝟖𝟗𝟕
 

𝟎. 𝟔𝟖𝟗𝟕
 ]

 
 
 
 
 
 
 

                

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝑰𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 
 
 

 
𝝆(𝒊𝒎𝒂𝒙−𝟏)

 
 

𝟎. 𝟓𝟎𝟖𝟏 × √𝑻𝒊𝒎𝒂𝒙
 
 

𝝆(𝒊𝒎𝒂𝒙−𝟏)
 ]

 
 
 
 
 
 
 
 

 

 

 

5. Feng’s 2nd Nozzle 

Figure 10 and Figure 11 show the Feng’s 2nd  nozzle subject to Isentropic and Shock 

conditions respectively. 

𝑨(𝒙) = 𝟐. 𝟎     𝒇𝒐𝒓  − 𝟏. 𝟎 ≤ 𝒙 < −𝟎. 𝟓 , 𝟎. 𝟓 ≤  𝒙 ≤ 𝟏. 𝟎 

 𝑨(𝒙) = 𝟏. 𝟎 +  𝒔𝒊𝒏𝟐(𝝅𝒙)          𝒇𝒐𝒓 − 𝟎. 𝟓 ≤ 𝒙 < 𝟎. 𝟓                  

 

Problem ID9: Feng’s 2nd Nozzle Isentropic Flow Problem ID10: Feng’s 2nd Nozzle Shock Flow 

     

Figure 10: Feng’s 2nd Nozzle Isentropic Flow Figure 11: Feng’s 2nd Nozzle for Shock flow 

 

Initial Condition 

Isentropic          Shock 
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[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

  𝒙𝒃𝒂𝒓 < −𝟎.𝟓                                                                

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟎. 𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

    𝒙𝒃𝒂𝒓 < −𝟎. 𝟓                  

, 

Isentropic           Shock 

 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)
 
𝟎. 𝟕

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

 − 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 < 𝟎. 𝟓           

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟏. 𝟎 − 𝟎. 𝟑𝟔𝟔(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)
 
𝟎. 𝟕

 
𝟏. 𝟎 − 𝟎. 𝟏𝟔𝟕(𝒙𝒃𝒂𝒓 − 𝟎. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

− 𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 < 𝟎. 𝟓 

  

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)
 
𝟏. 𝟓

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏. 𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 ≤ 𝟏. 𝟎        

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝒕=𝟎

=

[
 
 
 
 
 
 
 

 
 

𝟎. 𝟔𝟑𝟒 − 𝟎. 𝟑𝟖𝟕𝟗(𝒙𝒃𝒂𝒓 − 𝟏.𝟓)
 
𝟏. 𝟓

 
𝟎. 𝟖𝟑𝟑 − 𝟎. 𝟑𝟓𝟎𝟕(𝒙𝒃𝒂𝒓 − 𝟏.𝟓)

 ]
 
 
 
 
 
 
 

𝒙𝒃𝒂𝒓

𝟎. 𝟓 ≤  𝒙𝒃𝒂𝒓 ≤ 𝟏. 𝟎  

 

     Inflow Conditions                        Outflow Conditions:                                      Inflow Conditions                        Outflow Conditions 

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 − 𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

           

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊𝒎𝒂𝒙

𝒏

=

[
 
 
 
 
 
 

 
𝟐. 𝟎𝝆(𝒊𝒎𝒂𝒙−𝟏) − 𝝆(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝒖(𝒊𝒎𝒂𝒙−𝟏) − 𝒖(𝒊𝒎𝒂𝒙−𝟐)

 
𝟐. 𝟎𝑻(𝒊𝒎𝒂𝒙−𝟏) − 𝑻(𝒊𝒎𝒂𝒙−𝟐)

 ]
 
 
 
 
 
 

           

[
 
 
 
 
 
 

 
 
𝝆
 
𝒖
 
𝑻
 ]
 
 
 
 
 
 

𝒊=𝟏

𝒕

=

[
 
 
 
 
 
 

 
 
𝟏. 𝟎

 
𝟐. 𝟎𝒖𝟐 −𝒖𝟑

 
𝟏. 𝟎

 ]
 
 
 
 
 
 

     

[
 
 
 
 
 
 

 
 
𝜌
 
𝑢
 
𝑇
 ]
 
 
 
 
 
 

𝑖𝑚𝑎𝑥

𝑛

=

[
 
 
 
 
 
 

 
𝜌(𝑖𝑚𝑎𝑥−1)

 
0.43

 
𝑇(𝑖𝑚𝑎𝑥−1)

 ]
 
 
 
 
 
 

 

 

3.2 Distributed (Entire Nozzle) 

Verification of the numerical solution is done by comparing qualitatively known physical 
phenomena that occur over the entire nozzle. For isentropic flow, total temperature and 
total pressure remain constant. However, for shock flow the total pressure decreases 
across the shock. For the various nozzle geometries subjected to isentropic and shock 
flow, Figures 12-16 show that the total temperatures and pressures behave as expected.  
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Figure 12. Total temperature and Total Pressure for Problem ID 1 (isentropic) and Problem ID 
2 (Shock). 
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Figure 13. Total temperature and Total Pressure for Problem ID 3 (isentropic) and Problem ID 
4 (Shock). 

 

Figure 14. Total temperature and Total Pressure for Problem ID 5 (isentropic) and Problem ID 
6 (Shock). 

 

Figure 15. Total temperature and Total Pressure for Problem ID 7 (isentropic) and Problem ID 
8 (Shock). 
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Figure 16. Total temperature and Total Pressure for Problem ID 9 (isentropic) and Problem ID 
10 (Shock). 

 

3.3 Pointwise Location 

In order to validate the numerical solution, it is required that exact values are known at certain 

discrete points of the nozzle. One such location is the throat of the nozzle as shown in Figure 17. 

Let * denote any property at the throat of the nozzle as is normally used in scientific literature. The 

non-dimensional quantities  
𝑇0
𝑇∗⁄ ,

𝑃0
𝑃∗⁄  𝑎𝑛𝑑   𝑀∗ are known at the throat.  

 

The values of 𝑇∗ 𝑇0⁄ , 𝜌∗ 𝜌0⁄   and 𝑀∗ at the throat are 0.833, 0.528 and 1.0 respectively. Figures 
18-20 show that the numerical solution gave the same results.  

 

Figure 17. The throat (point of minimum cross-sectional area) 
of the nozzle where exact values are known 



 

 TFAWS 2017 – August 21-25, 2017 15  

 

Figure 18. 𝑇∗ 𝑇0⁄  at the throat (𝒙𝒃𝒂𝒓 = 𝟏. 𝟓)        Figure 19. 𝜌∗ 𝜌0⁄  at the throat (𝒙𝒃𝒂𝒓 = 𝟏. 𝟓) 

 

Figure 20. Mach number at the throat (𝒙𝒃𝒂𝒓 = 𝟏. 𝟓) 

 

SECTION 4 DEMONSTRATING THE ACCURACY OF THE STANDARD SOLUTION  

After verification and validation of the numerical solution, the numerical exact solution is given 
a grid sensitivity analysis to ensure that the solution does not change with change in grid size. 
For this project, the maximum grid at which the solution does not change with change in grid 
size was 5001 points. Figures 21-22 show that grid independence has been achieved. 
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Figure 21. Grid independence analysis for Problem ID 1 

 

 

Figure 22. Grid independence analysis for Problem ID 2 

 

Therefore we can conclude that the standard solution should have a grid size of 5001. For each 
geometry, the standard solution is expected to lie on each other for the isentropic and shock 
problem from the inlet until the shock wave is encountered. Behind the shock wave, the shock 
solution is expected to deviate from the isentropic solution since the shock solution is not 
reversible. Figures 23-27 demonstrate that the standard solution is qualitatively accurate.  
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Figure 23: Standard solution for ID 1 and ID 2       Figure 24: Standard solution for ID 3 and ID 4 

 

 

Figure 25: Standard solution for ID 5 and ID 6       Figure 26: Standard solution for ID 7 and ID 8 
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Figure 27: Standard solution for ID 9 and ID 10  

Finally, a quantitative error analysis is performed. This is done by comparing the exact known 
values at the throat of the nozzle for the isentropic and shock solutions. And subsequently 
comparing the total temperature, total pressure and mass flow rate throughout the entire 
nozzle. The total pressure is not used for the shock problems since it is not conserved across 
the shock wave. Table 1 shows that the maximum percent error obtain for the isentropic 
problems is 6.7852%. Table 2 shows that the maximum percent error obtain for the shock 
problems is 6.6817%. 

Table 1. Table of Error for Isentropic Problems 
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Table 2. Table of Error for Shock Problems 

 

 

CONCLUSIONS 

The results show that the maximum error was 6.78% and occurred at the throat of the nozzle 
with an acute throat gradient. The sharp gradient introduced errors since the transition from 
subsonic flow speed to supersonic speed across the throat of a nozzle occurs over a smooth 
gradient. Thus the maximum error occurring at that location is expected. A maximum error of 
6.78% can be considered minimal thus validating the use of the standard numerical solution as 
‘quasi-exact’. The standard solution can therefore be used in place of an analytical solution for 
the purpose of error analysis.  
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