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Objective

Model propellant slosh for Europa 

Clipper using two pendulums such that 

controls engineers can predict slosh 

behavior during the mission.
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BACKGROUND
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Motivation

• Importance of predicting propellant slosh

– Sloshing changes CM (center of mass) of spacecraft and 

exerts forces and torques on spacecraft

– Avoid natural frequencies of structures

– Size ACS (Attitude Control Systems) thrusters to counteract 

forces and torques

• Can model sloshing fluid as two pendulums with 

specific parameters (mass, length, damping)
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Background

• Europa Clipper tanks

– Bipropellant system

– Cylindrical with domed top and bottom

– 8-vane PMD (propellant management 

device)

• CFD (computational fluid dynamics) 

data used as “real” slosh behavior

– Have data for two propellants at three fill 

fractions each

– Initial condition of 15 degree free surface 

offset, released and allowed to settle

– CFD requires long computing time -> Need 

a computationally simple model
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Background

• Pendulum model

– Model fluid movement as two pendulums 

attached to central axis of the tank

– For each CFD data set, find parameters: 

mass, frequency, damping ratio, 

attachment height
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Existing Literature

• SP-106 (1966), SwRI (2000): 
Analytical equations and 
empirical correlations for 
damping and frequency

– Includes bare cylindrical (no PMD), 
sector, and annular tanks

• Cassini slosh paper (1994): Two 
pendulum model

– Slosh around PMD was modeled as 
combination of sector and annular 
slosh modes

– Two separate pendulums to model 
two slosh modes

– Static mass component at bottom 
that experiences little movement
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METHODS OVERVIEW
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Generate CFD Data
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• Propellants: NTO and MMH

• Fill fractions: 25%, 50%, 85%

• Data: CM, Force, Moment (all 3 axes)



Find Initial Guesses

• Curve fitting by finding parameters in pendulum equation that 
most closely match CFD

• Trying to resolve CFD into two pendulums

• Peak-to-peak values 

• -> Initial guesses for damping and frequency of each pendulum

• Note much higher damping before first peak
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Find Parameters to Fit CM Data

• Matlab’s fsolve(x)

• -> Mass, damping, and 
frequency parameters to fit 
CMx CFD data

• Refine and iterate
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Compare Sum of Pendulums to CFD Data

• Sum of two pendulums 

generates model for 

propellant slosh

• Should match both CM 

and Force data
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Mean Error in Force

• Metric to quantify accuracy of fit: mean absolute difference 
between CFD force and pendulum model force
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• Select methods that minimize this
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RESULTS AND LITERATURE 

COMPARISON
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Basis for results

• Coordinate system – origin at 

top of tank

• Parameters prioritized fitting 

the behavior after the first peak

• Two pendulum model is an 

approximation only 

– PMD does not create a perfectly 

sector nor annular tank and is only 

a fraction of tank height 

– Parameters not constant over time

– Model does not scale well with 

high fluid displacements
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Mass Participation Fraction
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• Pendulum mass as a fraction of total fluid mass

• Monotonic trends 

• Mass fractions are identical between NTO and MMH

• Piecewise linear fit
– First two fill fractions – fluid partially submerges PMD, sloshing occurs 

between vanes

– Last fill fraction – fluid completely submerges PMD, different slosh behavior
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Frequency
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• Function of pendulum’s length and acceleration

• Monotonic trends

• Frequencies are identical between NTO and MMH

• Frequencies for the two pendulums converge as fill fraction 
increases
– Sector and annular slosh modes become less distinct as PMD 

becomes fully submerged



Frequency - Literature Comparison 1
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• Left: Cassini paper referenced SP-106 for an analytical equation 
for slosh frequency in a bare tank (cylindrical tank with no PMD) 
and compared it to the frequencies of their two pendulums

• Right: Similar trends to Cassini found in Europa pendulum 
model frequencies

• Sector and annular slosh modes converge towards bare tank 
frequency as PMD becomes more submerged (fully submerged 
at 85% fill fraction for Europa tank)

Cassini Paper  Frequencies vs. Fill Fraction

(Bare Tank)

(Annular Tank)
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Frequency – Literature Comparison 2

• SP-106 references tables (Bauer, 1963) for an analytical equations for sector 
and annular slosh frequency

• Function of acceleration, geometry, and fluid height
• Pendulum frequencies are close to analytical equation frequencies

• Differences between analytical and pendulum fits due to:
– PMD is not exactly a sector/annular tank

– Half-dome bottom approximated as flat bottom – at 25% fill fraction, sloshing fluid is 
almost entirely in the dome

– PMD doesn’t include entire height of tank – at 85% fill fraction, PMD is completely 
submerged 20
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Damping Ratio

• Monotonic trends

• Slightly higher damping ratio for higher dynamic 

viscosity (MMH)
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• Mikishev and Dorozhkin found correlation for 
damping in a bare tank

• Function of geometry, acceleration, viscosity, 
and fluid height

• Scales by correction coefficient for domed 
bottom

• Pendulum damping within order of magnitude of 
analytical prediction

• Pendulum damping less sensitive to viscosity 
than analytical prediction – viscous vs. drag 
forces 22
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Length and Hinge Location

• Origin is top of tank

• Pendulum bobs stay within fluid

• Monotonic values for pendulum heights

• NTO and MMH heights are close but not identical
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Length and Hinge Location
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NTO 25% fill

NTO 50% fill NTO  85% fill

Approximate 

tank wall

Pendulum at 

15 degree 

offset



PLOTS COMPARING 

PENDULUM MODELS 

AND CFD DATA
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NTO 25% Fill Fraction
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NTO 25% Fill Fraction
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NTO 25% Fill Fraction
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NTO 25% Fill Fraction
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NTO 50% Fill Fraction
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NTO 50% Fill Fraction
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NTO 50% Fill Fraction
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NTO 50% Fill Fraction
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NTO 85% Fill Fraction
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NTO 85% Fill Fraction
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NTO 85% Fill Fraction
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NTO 85% Fill Fraction
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Summary of Parameters

NTO (nitrogen tetroxide) MMH (monomethyl hydrazine)

25% fill 50% fill 85% fill 25% fill 50% fill 85% fill

Mass fraction1 0.048 0.052 0.145 0.048 0.052 0.145

Mass fraction 2 0.03 0.029 0.018 0.03 0.029 0.018

Mass 1 (kg) 20.09 44.49 210.87 12.12 26.69 126.53

Mass 2 (kg) 12.56 24.81 26.18 7.58 14.89 15.71

Frequency 1 (rad/s) 0.1831 0.296 0.3322 0.1831 0.296 0.3322

Frequency 2 (rad/s) 0.7119 0.6575 0.36 0.7119 0.6575 0.36

Damping Ratio 1 0.34 0.105 0.035 0.35 0.11 0.037

Damping Ratio 2 0.015 0.022 0.035 0.02 0.025 0.037

Hinge Height 1 (m) 0.9 -0.4 -0.5 0.9 -0.5 -0.5

Hinge Height 2 (m) -1.0 -0.7 -0.3 -0.9 -0.7 -0.2

Static Mass Height 

(m) -1.12 -0.99 -0.79 -1.14 -0.99 -0.8

Mean Force Error 

from t=0 0.0716 0.075 0.1055 0.0398 0.0447 0.0679

Mean Force Error 

from First Peak 0.0241 0.018 0.0775 0.0118 0.0119 0.0518
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CONCLUSIONS
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Accuracy of Fit
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• Two-pendulum model can accurately capture either before or 

after first peak

• High confidence on frequencies except 85% fill pendulum 2

• Moderate confidence on mass, damping, and hinge location

– Sometimes several sets of parameters could have provided good 

matching to CFD

– Selected parameters that made physical sense

• Model parameters may reflect inaccuracies in CFD

• Pendulum model does not scale well for high fluid disturbance 

angles

• Damping is actually a function of time and distance traversed 

by moving fluid

– Pendulum model assumes damping is constant over time



Observations to Note

• Small initial fluid displacements: Changes have little 
impact on long-term CFD results

• Large initial displacements: behavior differs drastically
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Observations to Note
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• Changing density (NTO vs MMH) only slightly changes 

mocel damping, has little impact on CFD results



Areas for Further Investigation

• Find literature to support mass fraction parameters

• Potentially to capture first peak – add third 

pendulum with damping ratio of one

• Validate with more CFD data:

– At intermediate fill fractions

– At different initial fluid offset angles - 5 degree offset is 

more conservative than 15, will be used for deliverable in 

May

• Validate with experiments
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Thank You
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