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ABSTRACT 

The performance prediction of thermal systems in reduced gravity environments is of interest when 
extraterrestrial habitats are designed. However, adequate testing is often not available and the effects of 
reduced gravity in particular on two-phase flow systems, such as vapor compression cycles, are still poorly 
understood. One research approach is to design a terrestrial model system such that the extraterrestrial 
prototype system will be approximated. This research field has received some attention in the past but 
did not receive much attention recently. This paper presents model systems that are similar to a fictious 
desired prototype for three case examples. Additionally, the paper lists questions regarding thermal 
gravitational scaling that are insufficiently answered in the open literature. 

NOMENCLATURE 

Latin symbols Greek symbols 
𝑐𝑐𝑝𝑝  Heat capacity [kJ/(kg∙K)] 𝜆𝜆  Thermal conductivity [W/(m∙K)] 
D Hydraulic diameter [m] 𝜇𝜇  Viscosity [kg/(m∙s)] 
G Gravity [m/s2] 𝜈𝜈  Kinematic viscosity [m2/s] 
h Heat transfer coefficient [W/(m2∙K] 𝜌𝜌  Density [kg/m3] 
ℎ𝑓𝑓𝑓𝑓  Heat of vaporization [kJ/kg] 𝜎𝜎  Surface tension [N/m] 
L Length [m] 𝜃𝜃  Angle [°] 
𝑚̇𝑚  Mass flow rate [kg/s]  
P Pressure [kPa] Subscripts 
𝑄̇𝑄  Heat transfer rate [W] f Liquid 
T Temperature [°C] g Gaseous  
S Entropy [kJ/(kg∙K)] m Model 
S Slip ratio [-] p Prototype 
U Velocity [m/s]  
Z Value of objective function [-] 

INTRODUCTION 

The USA, China and the UAE plan to launch rockets towards Mars in 2020 for exploration and technology 
demonstration purposes. The three efforts are symptomatic for an unmissable acceleration of space 
exploration, both driven by governmental agencies as well as private companies. The far goals are diverse, 
but some of them are related to sustained human presence in microgravity (space stations) or reduced 
gravity (human habitats on other planets). The different gravity levels lead to design questions for thermal 
systems, which often require experiments in relevant environments. Since gravity cannot be shielded 
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against, these experiments are costly and require preparatory work far exceeding the effort for similar 
experiments in a terrestrial laboratory. 

The late 1980s and 1990s gave rise to the research area of thermal gravitational scaling, which was 
supposed to reduce the required testing in micro- or reduced gravity. The applications of the research 
were thermal systems and the objective was to confidently design a system for micro- or reduced gravity 
by building a scaled version of the system on earth. In particular, the research focused on scaling laws. 
Example applications covered both single-phase and two-phase systems and included but were not 
limited to: 

• Single-phase cooling/heating loops 
• Heat pipes 
• Mechanically pumped two-phase loops in radiator systems 
• Capillary force driven two-phase loops 
• Two-phase cooling systems for refrigeration and air-conditioning 

 
The most common nomenclature is to label the system that should operate in a non-normal gravity 
environment the prototype and the system that should approximate it on earth the model (albeit being a 
physical system and not merely a computational model). 

There is overlap between thermal gravitational scaling and gravity independence, but the two should not 
be confused. Obeying gravity independence laws as for example proposed in Zhang et al. (2004) and 
Bower and Klausner (2006) makes a thermal system gravity independent such that it could be moved into 
another gravity environment and operate with the same performance at steady-state (transient aspects 
are rarely included in gravity independence considerations). In contrast, thermal gravitational scaling 
involves two different systems, where one is a scaled version of the other and approximates its behavior 
in an environment of different gravity level. 

Despite the efforts in the 1990s, there is a shortage of practical scaling laws. As an example, Figure 1 
shows a schematic of a standard four component vapor compression cycle and its depiction in a T-s 
diagram. The main question is how to scale the components and connecting piping and select a fluid such 
that the (physical) model on earth approximates the prototype on a different planet. Although a clear law 
has not been established, significant work was conducted (Crowley and Izenson, 1989; Crowley and Sam, 
1991; Delil, 2001, 1989, 1991; Hurlbert, 2000; Hurlbert et al., 2004; Ungar, 1998). This study introduces 
the work of Delil and shows thermal gravitational scaling using three example cases. The goal is to recall 
past efforts, ask unanswered questions and thereby probe for interest in thermal gravitational scaling 20 
years after initial efforts were noticeably reduced. 

 

Figure 1: Schematic of four component vapor compression cycle and depiction in T-s diagram. 
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BRIEF REVIEW OF DELIL’S WORK 

Delil has published numerous research studies on the topic of thermal gravitational scaling and presented 
a scaling approach based on dimensionless numbers. Delil provided the following definition: “…scaling 
space-oriented two-phase heat transport systems and system components is the development of reliable 
spacecraft systems of which the proper in-orbit performance can be predicted using results of experiments 
with scale models under terrestrial gravity conditions”. He frequently motivated his research with three 
reasons (Delil, 1989): 

• “For a better understanding of two-phase flow and heat transfer phenomena” 

• “To provide means for the comparison and generalization of data” 

• “To develop a useful tool for the design of two-phase flow systems and system components, in 
order to save money and to reduce costs “ 

Delil defined a well-scaled, single-phase flow model as one where the “velocity, temperature and pressure 
field are identical” to the corresponding ones of the prototype. He stated that “even in single-phase 
systems, scaling is an all but simple problem” and that “scaling two-phase systems is considerably more 
complicated”. 

Delil saw the main applications in space exploration but also envisioned his theory to be useful for hyper 
gravity like on aircraft. His scaling approach and some aspects to be critiqued are described in the 
following. 

Approach 
Delil derived dimensionless numbers that describe single and two-phase flow and called them 𝜋𝜋-numbers, 
most of which are well known. Table 1 shows the definition and meaning of the 𝜋𝜋-numbers with small 
adjustments to 𝜋𝜋3,𝜋𝜋14,𝜋𝜋15  and 𝜋𝜋17  as explained in the following section. He started with 𝜋𝜋1 − 𝜋𝜋5  to 
cover adiabatic single-phase flow. 𝜋𝜋6 − 𝜋𝜋9 are gas-liquid property ratios and the Weber number to cover 
adiabatic two-phase flow. 𝜋𝜋10 − 𝜋𝜋14 add heat transfer properties. 𝜋𝜋15 was added as especially useful for 
scaling two-phase flow with respect to gravity (Delil, 1989) and 𝜋𝜋16 for compressibility effects. A detailed 
reasoning for 𝜋𝜋17 and 𝜋𝜋18 was not provided. Delil presented the numbers with an indication of the types 
of flow that they are related to but did not clearly outline which of them are essential for scaling. This is 
important since Delil said “perfect similitude between model and prototype is obtained if […] all 
dimensionless numbers are identical in prototype and model [which] is not possible in the case of two-
phase flow and heat transfer”. If scaling with respect to all related dimensionless numbers is not possible, 
it follows that a selection is needed. Delil indeed showed scaling examples for two-phase flow using only 
the Morton number, but a generalized guide to determining dimensionless numbers essential for scaling 
could not be found.   

The column “Use” in Table 1 indicates the 𝜋𝜋-numbers that are in the objective function for the examples 
in this study. 

Critique 
Delil’s work cannot be readily applied because the groups of dimensionless numbers that have to be 
matched for a certain component (heat pipe, evaporator, etc.) are undefined. It is evident that all related 
numbers cannot be matched so that either a subgroup of the related numbers must be defined as 
essential or a deviation of dimensionless numbers between model and prototype must be defined as 
tolerable.  
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Additionally, the following points may be helpful for other researchers reading Delil’s work and were 
employed in correcting/reformulating the 𝜋𝜋-number definitions in Table 1. 

• The Boiling number (𝜋𝜋14 ) is usually more intuitively defined as a ratio of heat transfer and 
capacitance rates than as a ratio of enthalpy differences. 

• The typical Morton number (𝜋𝜋15 ) definition (Pfister and Hager, 2014) is the inverse of the 
definition that Delil proposed. 

• If the Froude number (𝜋𝜋3) is defined as in Delil’s original work, then it is incorrect in the Morton 
number definition as 𝑀𝑀𝑀𝑀 = 𝑊𝑊𝑒𝑒3/(𝑅𝑅𝑒𝑒4𝐹𝐹𝑟𝑟2). 

• The condensation number (𝜋𝜋17) is defined incorrectly in several of Delil’s publications.  
 

Table 1: 18 𝝅𝝅-numbers as proposed by [] and use in objective function for reference cases a), b) and c). 

𝝅𝝅 - number Meaning Use 𝝅𝝅 - number Meaning Use 

𝜋𝜋1 = 𝐷𝐷
𝐿𝐿
  Geometry  𝜋𝜋10 = 𝑃𝑃𝑃𝑃𝑓𝑓 = �𝜇𝜇𝐶𝐶𝑝𝑝

𝜆𝜆
�
𝑓𝑓

  Liquid Prandtl number  

𝜋𝜋2 = 𝑅𝑅𝑒𝑒𝑓𝑓 = �𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇
�
𝑓𝑓

  Inertia/viscous a)/c) 𝜋𝜋11 = 𝑁𝑁𝑢𝑢𝑓𝑓 = �ℎ𝐷𝐷
𝜆𝜆
�
𝑓𝑓

  Convective/conductive  

𝜋𝜋3 = 𝐹𝐹𝑟𝑟𝑓𝑓 = � 𝑢𝑢
�𝑔𝑔𝑔𝑔

�
𝑓𝑓

  Inertia/gravity a)/c) 𝜋𝜋12 = 𝜆𝜆𝑔𝑔
𝜆𝜆𝑓𝑓

  Conductivity ratio  

𝜋𝜋4 = 𝐸𝐸𝑢𝑢𝑓𝑓 = � Δ𝑃𝑃
𝜌𝜌𝑢𝑢2

�
𝑓𝑓

  Pressure head/inertia c) 𝜋𝜋13 = 𝐶𝐶𝑝𝑝,𝑔𝑔

𝐶𝐶𝑝𝑝,𝑓𝑓
  Specific heat ratio  

𝜋𝜋5 = cos (𝜃𝜃)  Orientation with respect 
to g  𝜋𝜋14 = Q̇

𝑚̇𝑚ℎ𝑓𝑓𝑓𝑓
  Rate of quality change c) 

𝜋𝜋6 = 𝑆𝑆 = 𝑢𝑢𝑔𝑔
𝑢𝑢𝑓𝑓

  Slip factor  𝜋𝜋15 = 𝑀𝑀𝑜𝑜𝑓𝑓 =
𝑊𝑊𝑒𝑒𝑓𝑓3

𝑅𝑅𝑒𝑒𝑓𝑓4𝐹𝐹𝑟𝑟𝑓𝑓2
=
𝜇𝜇𝑓𝑓4𝑔𝑔
𝜌𝜌𝑓𝑓𝜎𝜎3

 Capillarity/buoyancy b) 

𝜋𝜋7 = 𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

  Density ratio c) 𝜋𝜋16 = 𝑀𝑀𝑀𝑀 = 𝑢𝑢/��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑠𝑠
  Mach number  

𝜋𝜋8 = 𝜇𝜇𝑔𝑔
𝜇𝜇𝑓𝑓

  Viscosity ratio c) 𝜋𝜋17 = ℎ
𝜆𝜆𝑓𝑓

 �
𝜇𝜇𝑓𝑓
2

𝑔𝑔𝜌𝜌𝑓𝑓
2�
1/3

  Condensation number  

𝜋𝜋9 = 𝑊𝑊𝑒𝑒𝑓𝑓 = �𝜌𝜌𝑢𝑢
2𝐷𝐷
𝜎𝜎
�
𝑓𝑓

  Inertia/surface tension c) 𝜋𝜋18 =
𝐿𝐿3𝜌𝜌𝑓𝑓

2𝑔𝑔ℎ𝑓𝑓𝑓𝑓
𝜆𝜆𝑓𝑓𝜇𝜇𝑓𝑓(𝑇𝑇−𝑇𝑇𝑜𝑜)

  Vertical wall 
condensation number  

 

EXAMPLE CASES 

To illustrate the application of the dimensionless number-based scaling approach, three examples are 
introduced which could be of interest in an extraterrestrial habitat. The cases are distinguished by both 
their respective parameters as well as their objective function for optimization. All prototype parameters 
are shown in Table 2 and individual case descriptions are provided in the following sections. 

Table 2: Prototype parameters, iteration variables and objective function for three reference cases. 

Case Fluid T [°C] P 
[kPa] D [m] u 

[m/s] g  Variables Z 

a) Water 20 100 0.500 0.10 Moon 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑇𝑇𝑚𝑚,𝑃𝑃𝑚𝑚,𝑢𝑢  𝑜𝑜𝑜𝑜𝑜𝑜(𝜋𝜋2,𝜋𝜋3)   
b) R134a 0 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇) 0.010 0.01 Mars 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑇𝑇𝑚𝑚  𝑜𝑜𝑜𝑜𝑜𝑜(𝜋𝜋15)  
c) R600a 40 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇) 0.005 0.01 Mars 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑇𝑇𝑚𝑚,𝐷𝐷𝑚𝑚,𝐿𝐿𝑚𝑚,𝑢𝑢𝑚𝑚,𝑞𝑞𝑚𝑚′′   𝑜𝑜𝑜𝑜𝑜𝑜(𝜋𝜋2,𝜋𝜋3,𝜋𝜋4,𝜋𝜋7,𝜋𝜋8,𝜋𝜋9,𝜋𝜋14)  

Case A: Adiabatic single-phase flow on Moon 
The first fictious reference case is a sewer system on the Moon (g = 1.62 m/s2) approximated as shown in 
Figure 2. Water with an open surface flows through a channel with rectangular cross-sectional area where 
the height is the characteristic length. For such a flow, the Reynolds number is a measure for the 
turbulence of the flow while the Froude number classifies the flow in a sewer as subcritical/tranquil for 
Fr<1 or supercritical/shooting Fr>1. This can be relevant for accurate measurements using flow sensors 
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(Enfinger and Stevens, 2006). The water in the prototype sewer should flow at 100 kPa ambient pressure 
and with a temperature of 20°C. The height of the water is 0.5 m during normal operation and the flow 
velocity is 0.1 m/s. The goal is to experimentally simulate the flow on earth looking at the Reynolds and 
Froude number in a channel with equal height of the flow by selecting a fluid and adjusting the 
temperature and pressure as needed. 

 

Figure 2: Sketch of sewer for example Case A. 

Case B: Adiabatic two-phase flow scaled by Morton number 
Two-phase R134a should flow adiabatically at a temperature of 0°C through a pipe of 1 cm in diameter 
and with a saturated liquid velocity of 1 cm/s on Mars (g = 3.71 m/s2). This is to be approximated at earth 
gravity leveraging the Morton number (𝜋𝜋15) as described by Delil in several research articles. Using this 
example, it will be shown that matching the Morton number is straight forward but that despite a good 
match of the Morton number, other dimensionless parameters can deviate significantly. 

Case C: Condensing two-phase flow scaled by multiple 𝝅𝝅-numbers 
A system is designed for Mars in which two-phase R600a rejects heat at a saturation temperature of 40°C. 
The refrigerant should flow in a small pipe of 0.5 cm in diameter with a saturated liquid velocity of 0.01 
m/s. A physical terrestrial model should be built. It is assumed that convection clearly overrules 
conduction effects in the condensation process such that 𝜋𝜋10 = 𝑃𝑃𝑃𝑃𝑓𝑓 ,𝜋𝜋11 = 𝑁𝑁𝑢𝑢𝑓𝑓 and 𝜋𝜋12 = 𝜆𝜆𝑔𝑔/𝜆𝜆𝑓𝑓 can be 
disregarded. Matching is pursued for the liquid phase 𝜋𝜋2 = 𝑅𝑅𝑒𝑒𝑓𝑓 ,𝜋𝜋3 = 𝐹𝐹𝑟𝑟𝑓𝑓 ,𝜋𝜋4 = 𝐸𝐸𝑢𝑢𝑓𝑓 and 𝜋𝜋9 = 𝑊𝑊𝑒𝑒𝑓𝑓  as 
well as the gas to liquid ratios 𝜋𝜋7 = 𝜌𝜌𝑔𝑔/𝜌𝜌𝑓𝑓 and 𝜋𝜋8 = 𝜇𝜇𝑔𝑔/𝜇𝜇𝑓𝑓. Additionally, the model should approximate 
the ratio of the heat transfer rate to the heat capacitance flow of the refrigerant 𝜋𝜋14 = 𝑄̇𝑄/(𝑚̇𝑚ℎ𝑓𝑓𝑓𝑓). 

FORMULATION OF OPTIMIZATION PROBLEM 

Each presented case is solved by matching certain dimensionless numbers. To apply an optimization 
algorithm, these numbers must be framed in an objective function (or cost function). The objective 
function together with iteration variables and variable bounds is then the optimization problem. The 
objective function is chosen to be intuitive such that the results can be readily interpreted. For one 
dimensionless 𝜋𝜋 -number in the objective function, the deviation from the prototype 𝜋𝜋 -number is 
calculated relative to the prototype 𝜋𝜋-number.  The value of 1 is subtracted to make the ideal value of the 
cost function 0. 

𝑍𝑍 = 𝑜𝑜𝑜𝑜𝑜𝑜(𝜋𝜋1) =
𝜋𝜋1,𝑚𝑚 − 𝜋𝜋1,𝑝𝑝

𝜋𝜋1,𝑝𝑝
− 1 =

𝜋𝜋1,𝑚𝑚

𝜋𝜋1,𝑝𝑝 
− 1 (1) 

If the cost function contains several 𝜋𝜋-numbers, then the average of their deviations is calculated and 
constitutes the final cost function: 
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𝑍𝑍 = 𝑜𝑜𝑜𝑜𝑜𝑜(𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑛𝑛) =
1
𝑛𝑛 �

  �
𝜋𝜋1,𝑚𝑚

𝜋𝜋1,𝑝𝑝 
− 1� + �

𝜋𝜋2,𝑚𝑚

𝜋𝜋2,𝑝𝑝 
− 1� + ⋯+ �

𝜋𝜋𝑛𝑛,𝑚𝑚

𝜋𝜋𝑛𝑛,𝑝𝑝 
− 1�  � . (2) 

For each contributing 𝜋𝜋-number, the absolute value is computed for the summation such that positive 
and negative deviations cannot cancel out.  Therefore, a value of the objective function of Z=0.2 means 
that the 𝜋𝜋-numbers in the model deviate on average 20% from the respective 𝜋𝜋-number in the prototype. 

The software EES (Klein and Alvarado, 2002) with the inbuilt Conjugate Directions Method was used to 
generate results for the following examples. The iteration variables and objective functions for each case 
are listed in Table 2. The bounds and initial values for the iteration variables are shown in Table 3. The 
optimization was conducted for an arbitrary selection of 12 fluids as shown in Table 4 for the three case 
examples. 

Table 3: Bounds and initial values for iteration variables. 

Variable Lower Guess Upper 
𝐷𝐷𝑚𝑚  [𝑚𝑚]  0.001 0.005 1 
𝑇𝑇𝑚𝑚 [°𝐶𝐶]  -40 5 100 
𝑃𝑃𝑚𝑚 [kPa] 30 500 2000 
𝑢𝑢𝑚𝑚 [𝑚𝑚/𝑠𝑠]  0.001 0.2 10 

 
Table 4: Considered fluids for each case example. 

Acetone Ethanol Propane R143a 
Ammonia Methanol R113 R152a 
Water n-Octane R134a R600a 

RESULTS 

Case A: Adiabatic single-phase flow on Moon 
This optimization problem can be simplified analytically by first evaluating the Froude number condition 

𝐹𝐹𝑟𝑟𝑓𝑓,𝑝𝑝 = 𝐹𝐹𝑟𝑟𝑓𝑓,𝑚𝑚 (3) 

�
𝑢𝑢

�𝑔𝑔𝑔𝑔
�
𝑓𝑓,𝑝𝑝

= �
𝑢𝑢

�𝑔𝑔𝑔𝑔
�
𝑓𝑓,𝑚𝑚

. (4) 

Realizing that the diameter shall be equal in this example, it follows that the flow velocity must be 

𝑢𝑢𝑚𝑚 = 𝑢𝑢𝑝𝑝�
𝑔𝑔𝑚𝑚
𝑔𝑔𝑝𝑝

. (5) 

The Reynolds number condition with fixed diameter and known velocity then reduces as follows: 
𝑅𝑅𝑒𝑒𝑝𝑝 = 𝑅𝑅𝑒𝑒𝑚𝑚, (6) 

�
𝑢𝑢𝑢𝑢
𝜈𝜈
�
𝑓𝑓,𝑝𝑝

= �
𝑢𝑢𝑢𝑢
𝜈𝜈
�
𝑓𝑓,𝑚𝑚

, (7) 

𝜈𝜈𝑓𝑓,𝑝𝑝�𝑇𝑇𝑝𝑝,𝑃𝑃𝑝𝑝� = 𝜈𝜈𝑓𝑓,𝑚𝑚(𝑇𝑇𝑚𝑚,𝑃𝑃𝑚𝑚) ∙ �
𝑔𝑔𝑝𝑝
𝑔𝑔𝑚𝑚

. (8) 

It remains to search the suitable (𝑇𝑇𝑚𝑚,𝑃𝑃𝑚𝑚) combination that matches the kinematic viscosities respecting 
the gravity adjustment. There is a perfect match (Z=9.6e-9) for ethanol at -5.75°C as shown in detail in 
Table 5. The pressure is insignificant for the viscosity such that the optimization of the pressure is almost 
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meaningless and the result is close to the initial guess value. The objective value Z would change negligibly 
if the pressure of the model was changed to 100 kPa (although the result is 500.7 kPa). For all other fluids, 
the optimization was constrained by the imposed bounds and the objective value larger than for ethanol. 
 

Table 5: Results for Case A. 

Information Prototype Model 
Fluid [-] Water Ethanol 
Flow velocity [m/s] 0.1 0.246 
Temperature [°C] 20 -5.73 
Pressure [kPa] 100 501 
Density [kg/m3] 998.2 812 
Viscosity [kg/(m∙s)] 0.001002 0.002004 
𝜋𝜋2 = 𝑅𝑅𝑒𝑒𝑓𝑓  49830 49830 
𝜋𝜋3 = 𝐹𝐹𝑟𝑟𝑓𝑓  0.1111 0.1111 
Z [-] 9.631e-9 

Case B: Adiabatic two-phase flow scaled by Morton number 
The Morton number is defined as follows: 

𝜋𝜋15 = 𝑀𝑀𝑜𝑜𝑓𝑓 =
𝑊𝑊𝑒𝑒𝑓𝑓3

𝑅𝑅𝑒𝑒𝑓𝑓4𝐹𝐹𝑟𝑟𝑓𝑓2
=
𝜇𝜇𝑓𝑓4𝑔𝑔
𝜌𝜌𝑓𝑓𝜎𝜎3

(9) 

The combination of dimensionless numbers cancels out the pipe diameter and the flow velocity. Hence, 
if the gravity level is set by the problem statement, matching the Morton number becomes a search for a 
saturation temperature that solves the following equation: 

�
𝜇𝜇𝑓𝑓4

𝜌𝜌𝑓𝑓𝜎𝜎3
�
𝑓𝑓,𝑚𝑚

=
𝑔𝑔𝑝𝑝
𝑔𝑔𝑚𝑚

�
𝜇𝜇𝑓𝑓4

𝜌𝜌𝑓𝑓𝜎𝜎3
�
𝑓𝑓,𝑝𝑝

. (10) 

The first row in Table 6 shows the prototype parameters and results for the four 𝜋𝜋-numbers of interest in 
this example: 𝑅𝑅𝑒𝑒𝑓𝑓 ,𝐹𝐹𝑟𝑟𝑓𝑓 ,𝑊𝑊𝑒𝑒𝑓𝑓  and 𝑀𝑀𝑜𝑜𝑓𝑓. The other rows show results for the models sorted by the best 
match. In the optimization process, 𝐹𝐹𝑟𝑟𝑝𝑝 and 𝐹𝐹𝑟𝑟𝑚𝑚 were equalized using the flow velocity u, which does not 
affect the Morton number. This explains the perfect match of all Froude numbers in Table 6. Model 1 
through 5 have very good objective values (matches of the Morton number). However, the Morton 
number alone is a poor indicator of the similarity of two-phase flows. Model 4 and 5 in Table 6 show that 
although the Morton numbers match, the Reynolds and Weber number differ significantly. Additionally, 
the liquid-gaseous property ratios differ strongly, such that prototype and model are not properly scaled.  

Table 6: Results for Case B. 

Order Fluid T [°C] 𝝅𝝅𝟐𝟐 = 𝑹𝑹𝒆𝒆𝒇𝒇 𝝅𝝅𝟑𝟑 = 𝑭𝑭𝒓𝒓𝒇𝒇 𝝅𝝅𝟗𝟗 = 𝑾𝑾𝒆𝒆𝒇𝒇 𝝅𝝅𝟏𝟏𝟏𝟏 = 𝑴𝑴𝒐𝒐𝒇𝒇 Z 
Prototype R134a 0.00 487.6 0.05192 0.1133 9.551E-12 0 
1. Model Acetone 25.31 415.3 0.05192 0.0915 9.551E-12 0.000002118 
2. Model R152a 3.40 743.0 0.05192 0.1987 9.551E-12 0.000002623 
3. Model R600a 23.50 588.2 0.05192 0.1455 9.551E-12 0.000005617 
4. Model Propane 49.15 974.9 0.05192 0.2854 9.551E-12 0.000040310 
5. Model CO2 -5.88 1420.0 0.05192 0.4712 9.551E-12 0.000040800 
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Repeated execution of the optimization algorithm for this case example shows slight variations in the 
dimensionless numbers and the Z-values. The optimization solver and the formulation of the objective 
function are probable reasons. Additionally, Delil (1989) shows that the Morton number as a function of 
the temperature has a parabolic shape such that two solutions are indeed possible for one optimization 
problem. All other fluids (as listed in Table 4) consistently lead to worse matches with Z>0.1; even after 
repeated execution of the solver.  

Case C: Condensing two-phase flow scaled by multiple 𝝅𝝅-numbers 
For Case A and B, a parametric study on the temperature would have been sufficient to find the optimum. 
In Case C, neither a single parametric study nor a heuristic approach would quickly yield the optimal value 
of the objective function because it is a function of seven 𝜋𝜋-numbers and there are five variables to iterate 
on the objective value in addition to the fluid selection. As can be seen from the definition of the 
dimensionless numbers, the length and the heat flux only affect 𝜋𝜋4 = 𝐸𝐸𝑢𝑢𝑓𝑓 = Δ𝑃𝑃/(𝜌𝜌𝑢𝑢2)  and 𝜋𝜋14 =
𝑄̇𝑄/(𝑚̇𝑚ℎ𝑓𝑓𝑓𝑓), hence, 𝐿𝐿𝑚𝑚 and 𝑞𝑞′′ can be calculated directly to achieve 𝜋𝜋4,𝑚𝑚/𝜋𝜋4,𝑝𝑝 = 𝜋𝜋14,𝑚𝑚/𝜋𝜋4,𝑝𝑝 = 1 without 
any penalty to the objective function. The objective value is then effectively a function of 𝜋𝜋2,𝜋𝜋3,𝜋𝜋7,𝜋𝜋8,𝜋𝜋9 
and the three iteration variables are 𝑇𝑇𝑚𝑚,𝐷𝐷𝑚𝑚,𝑢𝑢𝑚𝑚 for any given fluid. Table 7 shows the optimization results 
for the six best matches to the prototype (top row). The best match is possible with the same fluid at the 
same temperature as the prototype with Z=0.043. This is explained by the two property ratios 𝜋𝜋7 = 𝜌𝜌𝑔𝑔/𝜌𝜌𝑓𝑓 
and 𝜋𝜋8 = 𝜇𝜇𝑔𝑔/𝜇𝜇𝑓𝑓 which only depend on the temperature for a given fluid and significantly contribute to a 
decrease in the cost function when matched. The optimization result of the same fluid at the same 
temperature shows how the optimization algorithm finds a poor match for the gravity dependent 𝜋𝜋-
number (𝜋𝜋3 = 𝐹𝐹𝑟𝑟𝑓𝑓) in favor of gravity independent 𝜋𝜋-numbers because all of them have the same weight 
in the objective function and two can be matched perfectly by the same fluid at the same saturation 
temperature. A similar Z value is obtained by R152a and Propane. R152a has the lower objective value 
but Propane has the smaller maximum deviation for any single 𝜋𝜋-number ratio. R134a and R143a achieve 
objective values of Z<0.15 as well.  
 
Similar to Case B, there is some variability in the optimization result when comparing repetitive executions. 
Especially for the larger problem in Case C, the solver may also find local optimums instead of global 
optimums but the results differ only slightly. 
 

Table 7: Results for Case C. 

Order Fluid T [°C] D [m] u [m/s] 
𝝅𝝅𝟐𝟐,𝒎𝒎

𝝅𝝅𝟐𝟐,𝒑𝒑 
 

𝝅𝝅𝟑𝟑,𝒎𝒎

𝝅𝝅𝟑𝟑,𝒑𝒑 
 

𝝅𝝅𝟕𝟕,𝒎𝒎

𝝅𝝅𝟕𝟕,𝒑𝒑 
 

𝝅𝝅𝟖𝟖,𝒎𝒎

𝝅𝝅𝟖𝟖,𝒑𝒑 
 

𝝅𝝅𝟗𝟗,𝒎𝒎

𝝅𝝅𝟗𝟗,𝒑𝒑 
 Z 

Prototype R600a 40.0 0.0050 0.010 1 1 1 1 1 0 
1. Model R600a 40.0 0.0036 0.0117 0.854 0.844 1 1 1 0.043 
2. Model R152a 32.0 0.0040 0.0090 1.003 0.617 1 1.098 0.9998 0.069 
3. Model Propane 8.7 0.0025 0.0151 0.783 1.322 1 1.067 1.0000 0.087 
4. Model R134a 23.8 0.0041 0.0073 0.885 0.496 1 0.931 1.0010 0.098 
5. Model R143a -1.0 0.0054 0.0066 1.129 0.393 1 1.051 0.9999 0.113 

DISCUSSION 

Critique of Thermal Gravitational scaling 
The benefits of thermal gravitational scaling are potentially overrated: The terrestrial (physical) models 
should simulate the prototypes as accurately as possible but the two-phase flow scaling has an inherent 
unquantified uncertainty and a perfect match of dimensionless numbers is probably not possible. For a 
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system designer, these limitations may render the terrestrial model irrelevant and could explain why the 
work started by Crowley, Ungar, Delil and Hurlbert in the 1990s has faded afterwards. The open literature 
does not describe many case study examples where thermal gravitational scaling was essential in 
designing a thermal system for space. This would be important to achieve wide acceptance of thermal 
gravitational scaling as more than an academic exercise. Besides, a clear communication from space 
system designers about the interest in thermal gravitation scaling and applications of priority is needed. 

Open questions about thermal gravitational scaling 
Many questions are unanswered in the accessible literature. The following list presents several of them 
without claiming completeness: 

• In addition to the Froude number, what other gravity dependent numbers should be added to the 
list of dimensionless numbers for two-phase flow? 

• What is the gravity level that can be used in dimensionless numbers to approximate zero-gravity?  
• What are real-world examples where thermal gravitational scaling is needed? 
• Which group of 𝜋𝜋-numbers are essential for a given system? 
• How much deviation between 𝜋𝜋-numbers is tolerable in the scaling process? 
• What is the appropriate objective function once the set of essential 𝜋𝜋-numbers is found? 
• Can thermal gravitational scaling leverage terrestrial inclination testing to predict reduced gravity 

system behavior? 

CONCLUSIONS 

Thermal gravitational scaling was an active research topic 20 to 30 years ago and it is unclear whether it 
faded because of the difficulty of finding a practical theory or disinterest within the space industry. The 
theories presented in the literature have not matured to the point that other engineers could easily apply 
them, because important information is missing, such as dimensionless numbers that have priority in the 
matching process and how much deviation is allowed if it is impossible to match all numbers. This paper 
presented a possible approach to thermal gravitational scaling by suggesting an objective function and 
different sets of dimensionless numbers for three case examples. Low objective values were simple to 
find for a small number of considered dimensionless numbers but the objective value increased when 
more dimensionless numbers were added to the objective function. Future work should include heat 
transfer dependent dimensionless numbers in the optimization and investigate the simultaneous scaling 
of multiple components in one system. In addition, feedback from the space industry is needed to 
understand potential applications and interest in thermal gravitational scaling. 
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