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* Introduction to Thermal Transient Testing
« Structure Functions

 Thermal model calibration value, reasons and
method

* Power cycling testing for lifetime estimation

 Summary and Q&A




Airbus, Rolls-Royce & Siemens team up for electric
future
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B Humidity Electronic thermal management is heading to the wall
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55% [ Dust Systems designers who are used to boosting electronic system performance by adding ever-more
transistors may shortly have to rethink their design approaches, as increasing amounts of heat-and
the need to remove it-may be making the brute-force approach to system capability obsolete.

20°/L
Thermal challenges in the semiconductor industry are important:

Influence Reliability:  High temperature will inevitably cause

device/system failure

Improve Performance: Low temperature electronics may be
more efficient (LED-s, IC-s)

Decrease system cost: Proper testing can help avoid thermal
over-design, reducing weight and cost



Traditional Temperature Test Methods NE{”

* Only surface temperature (Thermocouples, IR camera)
« Effect by thermocouple itself or surface, emissivity and absorptivity.

Thermocouples IR camera

How do you know the real junction
temperature (Tj)?




How Do We Know AT, ?

» The forward voltage of a PN -
junction under forced current °
condition can be used as a

very accurate thermometer Iheating CD lsensing CD

« The change of the forward Vas T
voltage (TSP — temperature . —
sensitive parameter) should
be carefully calibrated
against the change of the 1000
temperature (see JEDEC
JESD51-1 and MIL-STD-
750D)

— In the calibration
process the Sy
temperature sensitivity
of the forward voltage is
obtained
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Thermal Characterization Utilizing Structure Function
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« Each section of the Structure Function path represents physical objects the
heat encounters. There is a correlation between physical objects and

sections of the RC path.

T3Ster Master: cumulative structure function(s)
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P(t)@W(t)=T(2)

*Through numerical manipulations, we can work out what thermal structure
would have this effect! The thermal structure will be a manifestation of

thermal R’'s and C’s.

T P
W(t)=T()®" P(¢)

=1



Consider a Cu rod of 1x1mm?2 cross-sectional area

Rod 1: 100mm (A, C,)
Rod 2: 40mm (A, C,), 20mm (A, 2xC,), 40mm (A, C,)

Temperature rise [°C]
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Thermal Transient Technology — Structure Functions

The same results in structure functions:

T3Ster Master: cumulative structure function(s)
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«  Obtain accurate and
detailed component
thermal metrics. A

simple change to the

' environment reveals the

10000

package.
(JEDEC Standard
JESD51-14)
Measurement
” ' . b ’ P Quantitatively measure

T3Ster Master: cumulative structure function(s)

changes in structure
through cycling.
Degradation of the die
attach can be observed
and measured
throughout the test.
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Real package

How Simulation and Test Support Each Other
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* The internal layout of the package is
asymmetrical.
* The package had a lower thermal
resistance for the top half of the package
compared to the bottom half
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Internal structure layout of the package
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Experimental Temperature Results
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Measured Temperature Results
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3D Simulation Model Calibration Results {:%

 The Structure Function graph on 1.0E+02

the right shows the initial p—

(uncalibrated) and final (calibrated) —
results from the simulation model, 1.0E400
in comparison to the measured ¥
results (blue line) obtained by %LOE"“
thermal transient testing Y ok J—
—Flotherm_base
« Thermal conductivity coefficients HOE0? —Flotherm_opt
and interfacial thermal resistance o0
values were aligned 0 0.02 0.04 0.06 0.08 0.1

Rth[K/W]

« When calibrated, the 3D CFD
model of the IGBT will behave in
the same way as the actual
package, including its transient
heating and cooling characteristics.



Traditional Process:
e Run set number of power cycles
Take to lab and test for failure

Repeat power cycling/lab testing
cycle until failure

Take to lab and determine reason
for failure

Repeat Process

Issues:
* Repetitive cycle/lab test process =

long times

* No “real time” indication of failure in
progress — only post mortem

e Failure cause requires lab analysis —
typically internal to package

Determine

Cause of
Failure
- Visual

Lab Test IGBT
for Failure

Power Cycle
IGBT Module

)

How about combining cycling and
analysis to a single test set-up?

- Sonic/Xray

- Dissection

How about automating the workflow?

sA




¢4
)
&
3

& Power Cycling of a Component .
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» Simulation of the power cycling process on an IGBT, illustrated in Simcenter
Flotherm

— High internal temperature gradients highlight areas more likely to fail

MagGradT (degC/mm
9G % )




Indicating Device Degradation:

T3Ster Master: cumulative structure function(s)
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Power Cycling and Failure Diagnosis

Continuous degradation of the
die-attach layer can be
observed after ~10,000 to
15,000 cycles




Assessing Field Reliability

« Damage models developed based on active power
cycling test results: Ny = fn(AT, Tm)

« Rainflow-counting algorithm processes 3D Thermal CFD
drive cycle temperature swings:

Results predict onset
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Thermal transient testing is an accurate way to characterize power
electronics

Structure functions will help you
understand package properties and the effect of external cooling
solutions

serve a perfect reference for calibrating CFD thermal models

You can measure cycle number to failure data as well as understand the
degradation process

You can use test and simulation to estimate mission profile based lifetime




