TFAWS Aerothermal Paper Session

Advancements in Spark Plasma Sintered Aluminium-Silicon Carbide as a Thermal Barrier Coating

Abhisek Mallick National Institute of Technology Raipur

> Presented By Abhisek Mallick TFAWS23-AE-1

Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

Spark Plasma Sintering of Al-SiC powder

- Powder Selection
 Composition, Particle size, distribution
- Temperature of Sintering Process
- Voltage, Current, Pulse Duration, Pressure-Holding Time
- Grain Size, Phase Composition checking using Scanning Electron Microscopy (SEM)

Fig: SPS Machine

Powder Selection

Composition of SiC in this matrix is of 20% and the particle size is in the range of 0.2-0.5 micrometers. The coating's ability to stop heat transmission from the substrate to the atmosphere will be enhanced by a uniform distribution pattern. Additionally, it will aid in preventing the coating's delamination at high temperatures. Particles between 0.2 and 0.5 micrometers in size offer an excellent blend between strength and thermal insulation. This size is both compact enough to offer effective thermal insulation and large enough to give the coating the required strength. Smaller particles are better at reflecting heat back to the substrate because they have a larger surface-to-volume ratio. This is accomplished by spraying a stream of molten SiC particles over the substrate. A regulated spraying process is used to equally disperse the particles over the substrate's surface.

Sintering Temperature

Using Powder Law Equation:

- Density = d₀ * (1 exp(-(n * p * t) / (d₀ ** (n 1))))
- density is the density of the powder at time t
- d₀ is the initial density of the powder
- p is the pressure
- t is the time
- n is the powder law exponent

The grain size is inversely proportional to the square root of the density. This means that a higher density will result in a smaller grain size. Conditions were, Pressure of 100 MPa and a time of 1000 seconds. The initial density of the powder was 21 g/cm³, density of more than 22 is to be achieved to get grain size of 0.5 micrometers. The Sintering Temperature required will be in range of 1600-1800 degree Celsius.

Voltage, Current, Pulse Duration, Pressure-Holding Time

Values of these Parameters are:

- Voltage: 10-20 kV
- Current: 100-200 A
- Pulse duration: 1-10 ms
- Pressure-holding time: 1-10 s

In order to ignite a spark that will melt the powder particles, the voltage must be strong enough. A strong enough current will be required to maintain the spark and for the sintering of the particles. The pulse length must be long enough for the particles to fuse together without going overboard and becoming too thick. The holding period under pressure must be sufficient for the coating to cool and harden.

Post Sintering Analysis

- **Grain Size**: The grain size is 0.5 micrometers, as desired. This is a good size for thermal insulation because it is small enough to reflect heat back to the substrate, but it is also large enough to provide the coating with the necessary strength.
- **Phase Composition**: The phase composition is 20% SiC and $80\% Al_2O_3$. This is the desired composition for a thermal barrier coating. The SiC provides the coating with its thermal insulation properties, while the Al_2O_3 provides the coating with its strength.
- The results of the post-sintering analysis show that the coating has the desired grain size, phase composition, density, and sintering temperature. This means that the coating is likely to have good thermal insulation properties and strength.

Fig: Grain size under SEM

CFD Analysis

Thermal Analysis

Fig: Steady-State Thermal Analysis of Al-SiC coated Hollow Cylinder

For this analysis a CAD model of hollow cylinder is designed with a coating of Al-SiC with 20% of SiC incorporated into its matrix

Results

TABLE 5 Model (A4) > Mesh					
Object Name	Mesh				
State	Solved				
Display					
Display Style	Use Geometry Setting				
Defaults					
Physics Preference	Mechanical				
Element Order	Program Controlled				
Element Size	5.e-002 m				
Sizing					
Use Adaptive Sizing	Yes				
Resolution	Default (2)				
Mesh Defeaturing	Yes				
Defeature Size	Default				
Transition	Fast				
Span Angle Center	Coarse				
Initial Size Seed	Assembly				
Bounding Box Diagonal	5.4104 m				
Average Surface Area	10.014 m ²				
Minimum Edge Length	9.8175e-002 m				
Quality					
Check Mesh Quality	Yes, Errors				
Error Limits	Standard Mechanical				
Target Quality	Default (0.050000)				
Smoothing	Medium				
Mesh Metric	None				
Inflation					
Use Automatic Inflation	None				
Inflation Option	Smooth Transition				
Transition Ratio	0.272				
Maximum Layers	5				
Growth Rate	1.2				
Inflation Algorithm	Pre				
View Advanced Options	No				
Advanced					
Number of CPUs for Parallel Part Meshing	Program Controlled				
Straight Sided Elements	No				
Number of Retries	Default (4)				
Rigid Body Behavior	Dimensionally Reduced				
Triangle Surface Mesher	Program Controlled				
Topology Checking	Yes				
Pinch Tolerance	Please Define				
Generate Pinch on Refresh	No				
Statistics					
Nodes	193849				
Elements	38442				

Alumina silica carbide > Constants
Donoity 2722 5 kg m/ 2

Density	3732.3 Kg mm-3
Coefficient of Thermal Expansion	4.5e-006 C^-1
Thermal Conductivity	195 W m^-1 C^-1

TABLE 18 Alumina silica carbide > Color Red Green Blue

130 181 143

TABLE 19

			-	
Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa	Temperature (
9.66e+010	0.2	5.3667e+010	4.025e+010	

TABLE 20 Alumina silica carbide > Tensile Yield Strength

Tensile Yield Strength Pa 5.1e+008

TABLE 21 Alumina silica carbide > Compressive Yield Strength Compressive Yield Strength Pa 5.e+008

Model (A4) > Geometry > Parts			
Object Name hypersonic cylinder-FreeP			
State	Meshed		
Graphi	cs Properties		
Visible	Yes		
Transparency	1		
D	efinition		
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coordinate System		
Reference Temperature	By Environment		
Behavior	None		
Ν	Aaterial		
Assignment	Alumina silica carbide		
Nonlinear Effects	Yes		
Thermal Strain Effects	Yes		
Bou	nding Box		
Length X	2.32 m		
Length Y	2.32 m		
Length Z	4.302 m		
Pr	operties		
Volume	4.3821 m ^s		
Mass	16356 kg		
Centroid X	2.8239e-017 m		
Centroid Y	0. m		
Centroid Z	2.15 m		
Moment of Inertia Ip1	34674 kg⋅m²		
Moment of Inertia Ip2	34674 kg⋅m²		
Moment of Inertia Ip3	18943 kg⋅m²		
S	tatistics		
Nodes	193849		
Elements	38442		
Mesh Metric	None		

Results

TABLE 9				
Model (A4) > Steady-State Thermal (A5) > Loads				
Object Name	Temperature Convection Fully Defined			
State				
Scope				
Scoping Method	Geometry Selection			
Geometry	2 Faces			
Definition				
Туре	Temperature	Convection		
Magnitude	2973.2 K (ramped)			
Suppressed	No			
Film Coefficient		650. W/m ² ·K (step applied)		
Ambient Temperature		298.15 K (ramped)		
Convection Matrix		Program Controlled		

TABLE 15 Model (A4) > Steady-State Thermal (A5) > Solution (A6) > Total Heat Flux

Time [s]	Minimum [W/m ²]	Maximum [W/m ²]	Average [W/m ²]
1.	1.1314e+006	1.3019e+006	1.2066e+006

TABLE 13 Model (A4) > Steady-State Thermal (A5) > Solution (A6) > Results				
Object Name	Temperature	Total Heat Flux	Directional Heat Flux	
State		Solved		
		Scope		
Scoping Method		Geometry Se	lection	
Geometry		All Bodie	2S	
	l	Definition		
Туре	Temperature	Total Heat Flux	Directional Heat Flux	
Ву		Time		
Display Time		Last		
Calculate Time History		Yes		
Identifier				
Suppressed		No		
Orientation			X Axis	
Coordinate System			Global Coordinate System	
		Results		
Minimum	2039.9 K	1.1314e+006 W/m ²	-1.3016e+006 W/m ²	
Maximum	2973.2 K	1.301	9e+006 W/m ²	
Average	2457.8 K	1.2066e+006 W/m ²	-54.006 W/m ²	
Minimum Occurs On		hypersonic cylinde	r-FreeParts	
Maximum Occurs On		hypersonic cylinde	r-FreeParts	
	Ir	nformation		
Time		1. s		
Load Step	1			
Substep	1			
Iteration Number	1			
	Integrati	ion Point Results		
Display Option		A	veraged	
Average Across Bodies			No	

Conclusion

Rapid Cooling presented a significant issue since it is challenging to stop the grains from expanding during sintering. The necessary grain size and phase composition is being attained, nevertheless, by carefully regulating the sintering conditions. Turbine parts can be effectively shielded from high temperatures using thermal barrier coatings consisting of fine-grained AI-SiC as they have strong thermal insulating qualities, which can lessen heat loss and boost effectiveness, since they are rather sturdy, thermal shock damage may be less likely to occur and also they are inert chemically, which can aid in preventing corrosion.

Thank You