

The SCIFLI Airborne Multispectral Image (SAMI) Payload

1. Hyun Jung Kim, Kylel Scott, Matthew Boyda, Tony Casey, Carey Scott, Jennifer Inman

- (NASA Langley Research Center, Hampton, VA, USA)
- 2. Tait Pottebaum (Opto-Knowledge Systems, Inc. (OKSI), Torrance, CA, USA)
 - 3. Brandon Russell (Labsphere, Inc., North Sutton, NH, USA)

Presented By Hyun Jung Kim Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

- ABOUT SCIFLI
 - HISTORY
 - PRIMARY GOAL
 - PAYLOAD CAPABILITIES (DyNAMITE vs. SAMI)
- SAMI PAYLOAD (THE SCIFLI AIRBORNE MULTISPECTRAL IMAGER)
 - SPECIFICATION
 - VERIFICATION
 - VALIDATION
 - EXAMPLE (Artemis-I MISSION SUPPORT)
- SUMMARY & FUTURE of SAMI

Everything Changed February 1st, 2003

Inception of HyTHIRM remote thermal observation of crewed launches after the Columbia accident

Texas. Image credit: Scott Lieberman

Requirements to Return to Flight

- Understand the physical cause
- Mitigate risk from a compromised thermal protection system to protect crew and payloads
- Required tool development by Research Centers

https://www.nasa.gov/image-feature/remembering-sts-107-and-her-crew

NASA SCIFLI: A Dedicated & Specialized Team

NASA

The Scientifically Calibrated In-Flight Imagery (SCIFLI) team is a committed and close-knit group of engineers, scientists, and subject matter experts.

The team has a two-decade-long proven track record of delivering flight-truth datasets, with over 60 missions ranging in complexity across all flight regimes. Our engineering datasets help investigators truly understand the behavior of vehicles under extreme conditions.

Mission-Specific Imaging Solutions

HIGHLY CUSTOMIZABLE MISSION ARCHITECTURES

Land and Sea Platforms

Over 60 missions support (since 2007)

- Subsonic and transonic drop testing
- Superorbital / deep-space sample return
- LEO and suborbital entry, descent, & landing
- Launch vehicle ascent, booster, & plume phenomena
- Launch abort, early-end-of-mission, flight termination sequence
- Upper atmospheric plasma and particle phenomenology

Collecting Flight Data

THE NECESSITY OF REAL-TIME FLIGHT DATA

Observing flight conditions is essential

- In extreme conditions, misunderstanding flight
 conditions can have tragic consequences, such as
 the Columbia accident, the catalyst for SCIFLI's creation.
- Information about vehicle conditions during mission events can be key to understanding performance of engineering & technology designs

Flight conditions are difficult to document

- While ground testing and simulations are essential tools, they cannot fully capture in-flight vehicle performance.
- Onboard instrumentation, while incredibly helpful, is subject to occasional failure, may only provide discrete values, or may not be recovered.

Airborne Imagery for SLS Ascent

Goal: Collect calibrated **temperature images of the base region of SLS core stage and exhaust plume dynamics** during boost phase.

Best Effort – Observe plume recirculation phenomena or Plume Induced Flow Separation (PIFS).

Best Effort – Observe Booster and Core Stage separation dynamics.

SLS Ascent Imagery of SRB (Solid Rocket Booster) Separation with WB-57

Predictions of Plume Structure & Heating in Base Region

Technical Challenges

- Large temperature range between regions of interest
- Emissivity variation with temperature and view angle
- Hot plume gas obscuring regions of interest

DyNAMITE Existing Payload – Limit on SLS Observation

FDA-STE-AT-1.1 Ascent Aerothermal

Airborne Imagery Contributions: Core Stage surface temperatures

□ FDA-STE-AT-1.2 Plume Radiation Heating

> Airborne Imagery: Exhaust plume radiation (thermal signature characterization, shape, size)

□ FDA-STE-AT-1.3 Plume Convection Heating

> Airborne Imagery: Core Stage and Booster surface temperatures

□ FDA-STE-AT-1.4 Plume Induced Flow Separation (PIFS) Heating

> Airborne Imagery: Core Stage and Booster plume recirculation

□ FDA-STE-AT-1.5 Plume Impingement – (Booster Separation)

> Airborne Imagery: Booster Separation Motors (BSM) activations, general plume direction/spray

Optimal Wavebands to Meet All Imaging Objectives

Carey F Langley

SCIFLI Airborne Multispectral Imager (SAMI) Systems Engineering Management Plan

NASA/TM-2020-5003464

SCIFLI AIRBORNE MULTISPECTRAL IMAGER (SAMI) SYSTEM REQUIREMENTS DOCUMENT

Carey F. Scott Jr. Langley Research Center, Hampton, Virginia

- DyNAMITE: Day Night Airborne Motion
 Imagery for Terrestrial Environments
- DyNAMITE MWIR channel limited to 3-5 µm; static narrow-band filter options only

SCIFL

Observation Requirement of New Airborne Optical System

Optimal Wavebands to Meet All Imaging Objectives

- Broadband (2-5 µm) MWIR for PIFS imaging; high temp core stage surface data available at 2 µm
- Multispectral Imager will allow for observation of plume features and hardbody thermal signatures with high spatial resolution, and low uncertainty in temperature retrieval

SAMI Payload Overview

Result: A customizable & cost-effective aircraft-agnostic multispectral imaging testbed designed to collect plume and surface temperatures during Artemis I ascent for safety and to validate / reduce required TPS mass for future flights.

SAMI Hardware

- SAMI First Light Integrated Ground Testing NFOV telescope during alignment
- NFOV telescope + optical bench SAMI Payload volume
- a) b) c) d) e)
- f) High-speed filter wheel
- Custom NFOV MWIR sensor g)
- Payload fit check h)
- SAMI on the NASA WB-57 i)

SAMI Payload Functional Verification Testing

SCC 'half-moon' imaging during vibration test

SAMI 'First Light' integrated imaging/tracking of Luna

SAMI environmental test for AIRS gimbal environment

Filter wheel operation on screen while connected to AIRS

Lab Testing Results:

- ✓ Operational temperature: -40 to +50 C
- ✓ Operational pressure: 5 to 15 psi
- ✓ WB-57 Vibrational environment
- ✓ Filter wheel sync and functionality
- ✓ Functional tracking with AIRS Gimbal
- ✓ Night-time operations

All functional requirements were verified via test or demonstration.

TFAWS 2023 – August 21-25, 2023

SAMI Payload Status

Primary platform selection	SAMI fabrication	Nov. 2018
1 st CDR (conceptual design review)		Feb. 2019
2 nd CDR (Relocated NIR camera and shift to single focus mechanism for all NFOV channels)		Oct. 2019
Initiate the SAMI fabrication		Oct. 2019
Assembled operation	Lab test	Dec. 2020
Software useability		May 2021
Environmental temp / pressure	Ground test	May 2021
AIRS mechanical integration		Oct. 2021
AIRS electrical integration		Dec. 2021
Vibrational environment		Dec. 2021
Aircraft (WB-57) integration	Flight test	Mar. 2021
Final hardware upgrade / integration (i.e., WFOV MWIR camera integration completion)	Ready for Artemis-I mission	Feb. 2022
Final software unit testing completion		Mar. 2022
Performance validation flight testing (field campaign using calibrated / known targets for Spatial resolution & radiometric performance testing)		Aug. 2022
Validation flight testing (Artemis-I mission)		Nov. 2022
SAMI calibration cart completion (providing radiometric and spatial calibration)		Mar. 2021
SAMI regular maintenance (enable reliable SAMI operations and availability)		

Performance Validation Testing

Flight Test Goals:

Performance validation through integrated flight testing

- ✓ Spatial performance characterization of all SAMI channels
- ✓ Radiometric performance testing & calibration of science channels
- Phase 1: Integrated Functional Checkouts

Phase 2: Ground-based radiometric target imaging

Spatial & Radiometric Performance Testing in August 2022:

- Spatial and radiometric testing Complete
- First operation of integrated systems against filed target Complete
- <u>Airborne, ground, and remote teams' success on communication &</u>
 <u>fight operation</u> Complete
- Synchronized measurements and station tracking with aircraft, success– Complete
- <u>Lessons learned / refinements test run for Artemis-I Complete</u>

Phase 3: Operational Test Flights

TS=17:25:39.211 EVT: T-32768 s FRAME=23204

[=1069.0 us OV=0.59 deg FOC MODE=OFFSET DFFSET=-50 R=62.6 km

REC OFF FE=18.2 Hz FLTER OFF

-VIS	P	R	FAUL
-NIR	P	R	FAUL
-SWIR	P	R	FAUL
-MWIR	P	R	FAUL
-VIS	P	R	FAUL
-MWIR	P	R	FAUL

SCIFLI Artemis-I Ascent Imaging using SAMI

- Mission Date: 06:47:44Z 16 November 2022
- Imaging Platforms: NASA 927 WB-57F Airborne Platform w/ SAMI Payload
- Data Types to Collected using SAMI
 - Vis and NIR (improper SWIR and MWIR exposure)
- Consequences of Night launch
 - No sunlight illumination in NIR or Vis (less bias error)
 - No background intensity

Example Data Products using SAMI: Artemis-I

(Left) Artemis 01 Launch: SWIR Frame 59219 Tower Clear (Right) Artemis 01 Launch: SWIR Frame 54815

Captured Image (@ launch)

Captured Image (before booster separation)

2 59219 2022/11/16 06:49:23.701251 foc 75.3km fr12.0 exp1500 9876C w1280 h1024 d12 s2621440 0x0000021E

Radiometric Calibration

SAMI Calibration Cart (SCC)

- Simultaneous calibration of all SAMI sensors with flooded aperture
- ✓ Images are collected over a wide range of conditions pre- and post flight
 - Characterize and calibrate the sensors
 - Convert pixel intensity to in-band radiance at entrance aperture
 - Image statistics for noise characterization and bad pixel detection

Ray Diagram of SAMI Calibration Cart

SAMI sensor layout

SAMI Payload Modification

OSIRIS-RE

- □ Motivated by OSIRIS-REx sample return mission
- Imaging spectrometer replaces existing UV-VIS camera in SAMI
- SAMI payload modification design review based on science requirement
 - Near-vehicle wake radiation measurement: N₂, No, and NO₂ band systems (UV-VIS / 315 – 700nm)
 - Surface temperature analysis: broad thermal emission from surface

OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) NASA asteroid-study and sample-return mission

Asteroid Bennu (>60 grams sample)

Future of SAMI Capabilities

Expand capability for future mission: reconfigurable either imaging or spectrometer

Infrared

Global thermal maps of vehicle surface

Transition on the Space Shuttle

Orbiter." (2012)

- Exact temperatures (extra calibration ۲ required)
- Waveband-specific ۲

Use Cases

- Verify onboard instrumentation
- Boundary layer transition and ۲ hypersonic fluid dynamics
- Plume interactions

Visual

- Qualitative, high resolution ۲
- Real-time streaming capabilities ۲

Use Cases

Document mission events such as parachute deployment and booster separation

Spectral

Chemical analysis of vehicle ۲ conditions in-flight

Use Cases

- Hypersonic reentry of asteroid sample ۲ return missions
- Heat shield ablation analysis ۲
- Vehicle heath monitoring ٠

Future SAMI Applications

NASA

SCIFLI'S Industry Partnerships

- SCIFLI's imaging solutions enable the collection of engineering data from vehicles in flight, allowing for better understanding of performance under extreme flight conditions.
- SCIFLI's new payload, SAMI, expanding the envelope of the quality and type of flight data possible (to meet customer objectives).
- The UV-VIS imaging spectrometer provides new technical capabilities.

https://scifli.larc.nasa.gov/

Back-up

1800 RPM

5" diameter Al wheel

· Sapphire filter substrates · Wheel is swappable

Custom filters, sync with sen

Target Species

Hot Surface - BHS

SAMI

 FDA-STE-AT-1.1 Ascent Aerothermal Airborne Imagery Contributions: Core Stage surface temperatures 	✓ SAMI
 FDA-STE-AT-1.2 Plume Radiation Heating Airborne Imagery: Exhaust plume radiation (thermal signature characterization, shape, size) 	✓ SAMI
 FDA-STE-AT-1.3 Plume Convection Heating Airborne Imagery: Core Stage and Booster surface temperatures 	✓ SAMI
 FDA-STE-AT-1.4 Plume Induced Flow Separation (PIFS) Heating Airborne Imagery: Core Stage and Booster plume recirculation 	✓ SAMI

□ FDA-STE-AT-1.5 Plume Impingement – (Booster Separation)

> Airborne Imagery: Booster Separation Motors (BSM) activations, general plume direction/spray

SAMI Optics and Sensors

- Main vertical plate provides primary structure
- Closed optical 'periscope' reduces thermal air currents and stray light
- SWIR and UV-VIS mount to optic box; modular fold mirror sub- assemblies
- MWIR and NIR mount to the telescope plate
- The box mounts directly to the telescope plate
- Centralized focus mechanism aft of primary mirror; dual actuators provide redundancy
- Ritchey–Chrétien design 8" (203 mm) telescope with f/8 (1625.6 mm focal length), 5.88 kg (12.97 lbs) weight, passive athermalization

Spatial & Radiometric Performance Testing

- 1. Use of FLARE targets for spatial and radiometric testing of SAMI VIS-NIR-SWIR-MWIR full motion video camera system
- 2. Two main goals of the campaign
 - Characterization of spatial performance of all SAMI wavebands
 - Radiometric performance testing & calibration of VIS-SWIR and MWIR wavebands
- 3. Multiple target / manual mirrors deployed
 - Targets specified for different SAMI bands / capabilities
 - VIS-SWIR (350 2500 nm), Aluminum mirror arrays
 - MWIR (2500 5000 nm), Steel mirror arrays
- 4. SAMI operations test successful
 - Spatial and radiometric testing completed
 - First operation of integrated systems against field targets
 - Airborne, ground, and remote teams: good on communication & flight operation
 - Synchronized measurements and station tracking with aircraft
 - Lessons learned/refinements test run for Artemis-I

Radiometric Calibration

SAMI Calibration Cart (SCC)

- ✓ Simultaneous calibration of all SAMI sensors with flooded aperture
- ✓ Two NIST-traceable calibration sources
 - IR-564/301 blackbody $(0^{\circ} 1200^{\circ})$ with 1" aperture
 - 12" HELIOS labsphere integrating sphere with 2" aperture
- ✓ High efficiency optics

OAP

mirror

- SORL off-axis parabolic (OAP) mirror ($D = 10^{"}$, $f = 60^{"}$)
- Precision applied optics custom mirror (4.75" major axis, 98.5° turn)

Images are collected over a wide range of conditions pre- and post flight

⇒ Characterize and calibrate the sensors

500 mm

- ⇒ Convert pixel intensity to in-band radiance at entrance aperture
- ⇒ Image statistics for noise characterization and bad pixel detection

SAMI Calibration Cart (SCC)

MWIR