Computation of Approximate Stagnation Point Heat Flux in Hypersonic Flow at Any Mach Number and Altitude: A Python-Based Numerical Approach

Anton Kulinich



#### Intro/Background/Purpose

SAN JOSÉ STATE

- Hypersonic flow regimes present unique challenges for flight systems: reentry crafts, hypersonic vehicles
  - Extreme temperatures, pressures, heat loads
    - Careful materials selection, thermal & structures tightly coupled, crucial for success of mission
    - Understanding heat rates, total heat load  $\rightarrow$  TPS sizing  $\rightarrow$  mass budgets
  - Variations in geometry cause a large effect on these design parameters
    - Blunt body vs. sharp leading edge
    - Blunt body detached the shock wave, decreases temperature gradients
- For conceptual design and analysis of reentry systems, can model the windward side of the vehicle as sphere with radius Rn
- Blunter body = stronger shock  $\rightarrow$  better energy dissipation





#### How can we quickly model our blunt body?

- Analytical solutions for hypersonic flow are elusive
- Easily accessible shock relations for supersonic flow do not hold at M>>1



- Air at high temperatures: molecular dissociation and ionization become significant
  - Chemical reactions and equilibrium states must be computed to more accurately model the flow downstream of the hypersonic show wave
- Understanding flow properties downstream of the shock can help predict approximate stagnation point heating
- Approximation methods exist, but require boundary layer edge conditions, to find these, the downstream-shock conditions are required

#### Purpose

- Approximation methods such as Fay-Riddel Method derived from boundary layer and stagnation point theories. Greatly simplify the problem, but..
- Many quantities still unknown properties at the boundary layer edge.
- As a student, high fidelity CFD tools are not readily accessible, nor are they the best tool for the job conceptual design, preliminary design
- The purpose of this tool is to provide a fast, low compute power hypersonic normal shock wave flow properties calculator that approximates stagnation point heating for a blunt body (sphere) with some nose cone radius R<sub>n</sub>



#### Laminar Boundary Stagnation Point heating

S

#### How to find downstream properties?

$$q_w = 0.763 Pr^{-0.6} (\rho_e \mu_e)^{1/2} \sqrt{\frac{du_e}{dx}} (h_{aw} - h_w)$$
$$\frac{u_e}{dx} = \frac{1}{R} \sqrt{\frac{2(p_e - p_\infty)}{\rho_e}} \qquad h_{aw} = h_e + r(h_0 - h_e)$$

Can find boundary layer edge conditions using numerical solver.



**TFAWS 2023** 

#### Physics, assumptions for solver

- Bow shock approximated as normal shock wave
- Laminar Compressible boundary layer at stagnation point
- Nonisentropic process
- Adiabatic across shock wave, conservation of total temperature
- Implementing chemical equilibrium chemistry allowing for infinite time for gas to reach equilibrium
- Adiabatic wall, wall temperature constant
- Air made up of  $N_2$  and  $O_2$



### **Governing Equations**

Conservation of Mass

 $\rho_1 u_1 = \rho_2 u_2$ 

**Conservation of Momentum** 

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

$$\frac{\text{Conservation of Energy}}{h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}}$$

SJSU SAN JOSÉ STATE UNIVERSITY Solve for downstream conditions as function of a thermodynamic ratio, in this case the density ratio

$$u_2 = \frac{\rho_1}{\rho_2} u_1$$

$$p_2 = p_1 + \rho_1 u_1^2 \left( 1 - \frac{\rho_1}{\rho_2} \right)$$

$$h_2 = h_1 + \frac{u_1^2}{2} \left( 1 - \left(\frac{\rho_1}{\rho_2}\right)^2 \right)$$

### **Governing Equations**

Conservation of Mass

 $\rho_1 u_1 = \rho_2 u_2$ 

**Conservation of Momentum** 

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

$$\frac{\text{Conservation of Energy}}{h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}}$$

SJSU SAN JOSÉ STATE UNIVERSITY

Using variable *x*, we now have:

$$T(x) = xT_1 + x\frac{u_1^2}{R} (1 - x)$$

$$p_2(x) = p_1 + \rho_1 u_1^2 \left( 1 - x \right)$$

$$h_2(x) = h_1 + \frac{1}{2}u_1^2\left(1 - x^2\right)$$

### How to solve for x?

- Given **x** is the ratio of density upstream to downstream of the shock, if we can find a solution for  $\rho_1/\rho_2$  the rest of the thermodynamic values can be computed
- But first: reactive chemistry due to high temperatures!
- Knowing any of the variables on the right, we can <u>uniquely define the chemistry composition</u>
- Let's assume air is made of N<sub>2</sub> and O<sub>2</sub>

| Variable                   | <b>Useful Definitions</b>                                      |  |  |  |
|----------------------------|----------------------------------------------------------------|--|--|--|
| Partial Pressures $(p_i)$  | $p_i V = \mathcal{N}_i \mathcal{R} T$                          |  |  |  |
| Concentrations $(C_i)$     | $C_i = \frac{p_i}{\mathscr{R}T}$                               |  |  |  |
| Mole-Mass Ratio $(\eta_i)$ | $\eta_i = \frac{p_i v_i}{\mathcal{R}T}$                        |  |  |  |
| Mole Fraction $(X_i)$      | $X_i \equiv \frac{p_i}{p} = \frac{\mathcal{N}_i}{\mathcal{N}}$ |  |  |  |
| Mass Fraction $(c_i)$      | $c_i = \frac{\rho_i}{\rho}$                                    |  |  |  |

$$\sum_{i} p_i = p \qquad R = \sum_{i} c_i R_i$$

 $\sum_{i} X_i = 1$ 

$$\mathcal{M} = \frac{1}{\sum_{i} c_{i} / \mathcal{M}_{i}} = \sum_{i} X_{i} \mathcal{M}_{i}$$

**TFAWS 2023** 

#### Reactions occurring in this model

- Thermally perfect gas
- Enthalpy and Energy functions of **T**
- Enthalpy/internal energy functions of h<sub>i</sub> and e<sub>i</sub> (each species of gas *i*)

Where vi is the stoichiometric mole number associated with species

 $O_2 \rightleftharpoons 2O$   $N_2 \rightleftharpoons 2N$   $NO \rightleftharpoons N + O$  $NO \rightleftharpoons NO + +e^-$ 



### **Gibbs Free Energy**

Set Gibbs free energy to zero (equilibrium)

 $v_i$  is the stoichiometric mole number associated with species

Knowing equilibrium constant  $\mathbf{K}_{\mathbf{p}}$  at any temperature we can solve for  $\mathbf{p}_{\mathbf{i}}$ 

Knowing **p**<sub>i</sub> (or mole fraction, etc) we know the unique chemical composition of the equilibrated gas

$$\sum_{i} G_i \mathcal{N}_i = \sum_{i} v_i G_i = 0$$

$$\prod_{i} p_{i}^{\nu_{i}} = \exp(-\sum_{i} \nu_{i} \frac{G_{i}^{p_{i}=1}}{\Re T})$$

$$\prod_{i} p_i^{\nu_i} = K_p(T)$$

#### Gathering thermodynamic data

Used data found in: McBride, B. J., Heimmel, S., Ehlers, J. G., and Gordon, S., *Thermodynamic Properties to 6000 K for 210 Substances involving the first 18 elements*, SP-3001, National Aeronautics and Space Administration (NASA), 1963.

- **H(T)**, **S(T)**  $\rightarrow$  can find K<sub>P</sub>(T)
- Curve fit this data

$$K_p = e^{-\Delta G^{p=1}/\mathscr{R}T}$$

- Data only provided up to 6000K (discussion on this later)



#### Kp Curve fits

Used python: scipy.optimize import curve\_fit

Function:  $K_{P}(T) = A^* \exp(B^*T) + C$ 

Fitted  $K_p(T)$  for the reaction data available for  $N_2 \rightarrow 2N, O_2 \rightarrow 2O, NO \rightarrow N + O$ 



### Knowing Kp for given T gives...

4 equations, 7 unknowns  $\rightarrow$ 

 $\frac{X_O^2}{X_{O_2}} = \frac{1}{\rho} K_{p_1}$ 

 $\frac{X_N^2}{X_{N_2}} = \frac{1}{\rho} K_{p_2}$ 

 $\frac{X_N X_O}{X_{NO}} = \frac{1}{O} K_{p_3}$ 

 $\frac{X_{NO^+} + X_{e^-}}{X_{NO}} = \frac{1}{\rho} K_{p_4}$ 

SIS

Need to introduce 3 more equations (conservation of atomic nitrogen, oxygen, charge)

 $2X_{O_2} + X_O + X_{NO} + X_{NO+} = 2X_{O_2}^*$ 

 $2X_{N_2} + X_N + X_{NO} + X_{NO+} = 2X_{N_2}^*$ 

 $X_{NO+} - X_{e^-} = 0$ 

**TFAWS 2023** 

Plug Kp equations into conservation of atomic nitrogen and oxygen equations to produce:

 $\left(\frac{2\rho}{K_{p1}}\right)X_{O}^{2} + \left(1 - \frac{\rho X_{N}}{K_{p3}}\right)X_{O} + \left(-2X_{O_{2}}^{*} + X_{NO+}\right) = 0$  $\left(\frac{2\rho}{K_{p2}}\right)X_{N}^{2} + \left(1 - \frac{\rho X_{N}}{K_{p3}}\right)X_{O} + \left(-2X_{N_{2}}^{*} + X_{NO+}\right) = 0$ 

Finding positive root with initial values for  $X^*_{N2,O2}$  we can get values for  $X_O$  and  $X_N$ 

August 24, 2023

#### **Results of Chemistry Solver**

Tested at 1atm constant pressure. Results good but slightly off, this is most likely due to the curve fits on the thermodynamics data for each reaction, species.





Anderson "Hypersonic and High Temperature Gas Dynamics"

August 24, 2023

## Knowing solution for $X_o$ and $X_N$ gives ...

So knowing mole fractions, (or partial pressures, other intensive variables) we know the properties of the gas mixture

Knowing a value for  $\rho$  (or in our case  $\rho_2$ ) can be plugged into the conservation equations that were derived earlier (functions of x where x =  $\rho_1/\rho_2$ 

$$\eta_i = \frac{X_i}{\sum X_i}$$

$$\mathcal{M}_{\text{mixture}} = \sum \left( \eta_i \cdot \mathcal{M}_i \right)$$

$$\rho = \frac{P\mathcal{M}_{\text{mixture}}}{\mathcal{R}T}$$

#### How to converge a solution on x?

The total enthalpy downstream of the shock is equal to the sensible enthalpy plus the enthalpy of formation for each species plus the  $(1/2)u^2$  contribution, weighted by each species mole fraction  $\eta_i$ 

Need to know sensible enthalpy of each gas species, enthalpy of formation for each gas species

$$\underbrace{h_2 - h_1}_{h_2 - h_1} = \underbrace{(h_{\text{sens}_2} - h_{\text{sens}_1})}_{(h_2 - h_1)} + \underbrace{(e_{0_2} - e_{0_1})}_{(h_2 - h_1)}$$

Change in enthalpy

Change in sensible enthalpy Change in zeropoint energy Change in zero-point energy is the standard heat of formation for that gas species, data fitted as function of Temperature



Data for  $(\Delta H_f)_i^{\circ}$  fit using 3rd degree polynomial

SAN JOSÉ STATE

S



Data for  $(\Delta H_f)_i^o$  fit using 3rd degree polynomial

SAN IOSÉ STATE

Processing y\_column: N (delta H\_T)\_f [J/kg] [ 1.23516218e-05 -1.10465389e-01 5.03010078e+02 3.36201583e+07]



Data for  $(\Delta H_f)_i^o$  fit using 3rd degree polynomial

SAN IOSÉ STATE

S



Data for  $(\Delta H_f)_i^{\circ}$  fit using 3rd degree polynomial

SAN IOSÉ STATE

S



#### Chemical Composition solver (inputs T, P)

- Average 7 iterations per solution
- Example, 300K → 6000K, 50 cases
   Total compute time 1.10 seconds
- Example output of Solve\_chemistry(T,P) function

| 1 Solve_chemistry(3000,1)                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------|
| 0.11768292682926829                                                                                                          |
| CONVERGED                                                                                                                    |
| Current T = 3000                                                                                                             |
| Current P = 101325                                                                                                           |
| {'0': 0.3603640152717528, 'N': 0.003064821075105413, 'NO+': 1.5635618046626823e-10, '02': 0.013991351215017602, 'N2': 0.7726 |
| tierations to converge = 6                                                                                                   |
| sum of mole/mass ratios = 1.1817144352938036                                                                                 |
| density of mixture = 0.09917379762257214 kg/m^3                                                                              |
| Mixture R constant: R_specific = 340.56374576416084                                                                          |
| Molar Mass of Mixture = 0.02441384352683782 kg/mol                                                                           |
| (array([3.60364015e-01, 3.06482108e-03, 1.56356180e-10, 1.39913512e-02,                                                      |
| 7.72640931e-01, 3.16533161e-02, 1.56356180e-10]),                                                                            |
| array([3.04950168e-01, 2.59353782e-03, 1.32312999e-10, 1.18398750e-02,                                                       |
| 6.53830493e-01, 2.67859266e-02, 1.32312999e-10]),                                                                            |
| array([1.99841444e-01, 1.48799529e-03, 1.62620730e-10, 1.55183182e-02,                                                       |
| 7.50230708e-01, 3.29215345e-02, 0.00000000e+00]),                                                                            |
| array([3.04950168e-01, 2.59353782e-03, 1.32312999e-10, 1.18398750e-02,                                                       |
| 6.53830493e-01, 2.67859266e-02, 1.32312999e-10]),                                                                            |
| 340.56374576416084,                                                                                                          |
| 0.02441384352683782,                                                                                                         |
| 0.09917379762257214)                                                                                                         |





Use Chemistry Solver inside static enthalpy computation

$$h_{\text{mixture}} = \sum_{i} \eta_{i} (H - E_{0})_{i} + \sum_{i} \eta_{i} (\Delta H_{f})_{i}^{\circ}$$

.

Where: 
$$(H - E_0)_i = \frac{3}{2}\mathscr{R}T + \mathscr{R}T + \frac{hv/kT}{e^{hv/kT} - 1}\mathscr{R}T + \mathscr{R}T = \frac{7}{2}\mathscr{R}T + \frac{hv/kT}{e^{hv/kT} - 1}\mathscr{R}T$$

$$h_t = h_{\text{mixture}} + \frac{1}{2}u^2$$

SJS

SAN JOSÉ STATE

August 24, 2023

#### Use Chemistry Solver inside static enthalpy computation

T = 3000K,

P = 1 atm

1 Static\_Enthalpy\_mixture(3000,1)

```
0.11768292682926829
CONVERGED
Current T = 3000 K
Current P = 101325 Pa
{'0': 0.3603640152717528, 'N': 0.003064821075105413, 'N0+': 1.5635618046626823e-10, '02': 0.013991351215017602, 'N2': 0.7726
409313493235, 'N0': 0.03165331606989169, 'e-': 1.5635618046626823e-10}
iterations to converge = 6
sum of mole/mass ratios = 1.1817144352938036
density of mixture = 0.09917379762257214 kg/m^3
Mixture R constant: R_specific = 340.56374576416084
Molar Mass of Mixture = 0.02441384352683782 kg/mol
```

#### How the solver works

- 1. Initialization:
  - a. Compute free stream conditions: enthalpy, density, velocity.
- 2. Define Residual Function:
  - a. Calculate difference between computed and thermally perfect enthalpy downstream. (use chemical iterative solver)
- 3. Iterative Solution:
  - a. <u>Secant method converges</u> solution for density ratio (x)

- 4. Compute Final Properties:
  - a. Determine <u>downstream</u> <u>temperature, density, pressure,</u> <u>and other properties.</u>
- 5. Return:
  - a. Density ratio, enthalpy difference (for convergence check), and downstream properties.

#### **Residual Function**

$$T(x) = xT_1 + x\frac{u_1^2}{R}(1-x)$$

$$p_2(x) = p_1 + \rho_1 u_1^2 \left( 1 - x \right)$$

Define residual function f(x)

Input: x (initial guess)

S

 $h_2(x) = h_1 + \frac{1}{2}u_1^2\left(1 - x^2\right)$ 

Return: **residual** (h2 - h2\_thermally\_perfect) where h2 is computed using conservation of equation and knowing initial h1 and velocity u1, and an initial guess for x. **NEW VALUES FOR T2 and P2 generated**  $\rightarrow$  **chemistry solver**  $\rightarrow$  **h**<sub>mixture</sub>

 $h_2(x) - h_2_{mixture}$  = residual. Minimize residual using secant method

$$h_{\text{mixture}} = \sum_{i} \eta_{i} (H - E_{0})_{i} + \sum_{i} \eta_{i} (\Delta H_{f})_{i}^{\circ}$$

TFAWS 2023

#### Secant Method

$$\begin{aligned} x_2 &= x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}, \\ x_3 &= x_2 - f(x_2) \frac{x_2 - x_1}{f(x_2) - f(x_1)}, \\ &\vdots \\ x_n &= x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}. \end{aligned}$$

#### Solver Example

#### **INPUTS**:

| Parameter   | Value   |  |  |  |  |  |
|-------------|---------|--|--|--|--|--|
|             |         |  |  |  |  |  |
| T1          | 288     |  |  |  |  |  |
| Mach_number | 15      |  |  |  |  |  |
| p1          | 10132.5 |  |  |  |  |  |
| gamma1      | 1.4     |  |  |  |  |  |
|             |         |  |  |  |  |  |

#### **Outputs:**

```
sum of mole/mass ratios = 1.2146732943393905
density of mixture = 1.6362746208853745 kg/m^3
Mixture R constant: R_specific = 350.06230446033226
Molar Mass of Mixture = 0.023751400519452858 kg/mol
Density downstream = 1.636274620886198 kg/m^3
_____ FLOW SOLVER RESULTS _____
T2 = 5247.621988057359 K
P2 = 3005827.7180780955 Pa
h2 = 16558391.754739717 J/kg
h2tp = 16560081.357987924 J/kg
```

Secant method converged solution: 0.061422

-----

Difference between built in and secant solver = 1.9999999999999990613e-06



#### Mole Mass Ratios of gas species vs. Mach

Altitude = 25,000 meters

Mach varied from  $3 \rightarrow 40$ 

T1, P1 and  $\rho_1$  held constant, calculated using atm1976 function in code that takes in argument (h = altitude meters) returns T, P,  $\rho$ 

SAN IOSÉ STATE

S



#### TFAWS 2023

#### T2/T1 vs $V_{\infty}$ with varied freestream atmospheric pressure

Comparison to plot in Anderson textbook



608 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



#### T2 vs free stream velocity at varying atmospheric altitude

Here is the code used as the input for the calculator for example

Mach\_numbers = np.linspace(3, 27, 30)

altitudes = np.linspace(5000,92000,5)

The altitudes feed into atm1976 function to produce freestream conditions





#### T2 vs free stream velocity at varying atmospheric altitude

Better trend up until 7000-8000 K (due to Kp and delta H curve fits?)



#### Heat Flux

Fay - Riddler Method/ Van Driest method gives the following solution for sphere with compressible laminar boundary layer behind hypersonic normal shock

$$q_w = 0.763 P_r^{-0.6} (\rho_e \mu_e)^{1/2} \sqrt{\frac{du_e}{dx}} (h_{aw} - h_w)$$

Where we can plug in our numerically computed values where edge conditions are assumed to be equal to downstream (subscript 2) conditions

$$h_{aw} = h_e + r(h_0 - h_e)$$

In the code, the adiabatic wall temperature can be set by the user.

Tw = constant set by user

R\_n = set by user (radius of spherical blunt body in meters)

$$\frac{du_e}{dx} = \frac{1}{R}\sqrt{\frac{2(p_e - p_\infty)}{\rho_e}}$$

#### Results, comparisons

#### MISSION: APOLLO AS-501 (APOLLO-4)

PLANET: EARTH LAUNCH: NOV 9, 1967 ENTRY: NOV 9, 1967

MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations. INSTRUMENTATION: 17 pressure sensors all worked, and 23 calorimeters worked initially. Radiometer functioned well. - 3.62 m

1.06 m

**NOTES:** TPS thickness: Ablator = 4.32 cm, braised stainless-steel substructure (PH 15-7 MO) = 5.08 cm. Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb (2014-T6 and 5052-H39) = 3.81 cm Manufacturer: AVCO Corp.

| Trajectory                                   |                                                                 | Geometry                               |                             | Aero/thermal                    |                      | TPS                                 |                                                                                                           | Parachutes                        |                                                                                                                                                 |
|----------------------------------------------|-----------------------------------------------------------------|----------------------------------------|-----------------------------|---------------------------------|----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry angle                                  | Inertial -6.93<br>Relative-7.19°<br>Entry altitude<br>121.92 km | Shape                                  | Capsule:<br>33°<br>cone     | Velocity at<br>peak heat        | 10.04<br>km/s        | Forebody<br>material<br>designation | Avco 5026-39 HC                                                                                           | Туре                              | <ul> <li>(1) 2 conical ribbon<br/>drogue parachutes,</li> <li>(2) 3 ringshot pilot<br/>parachutes, (3) 3 ringsai<br/>main parachutes</li> </ul> |
| Entry<br>velocity:<br>inertial &<br>relative | Inertial: 11.14<br>km/s<br>Relative: 10.73<br>km/s              | Nose<br>radius                         | 4.66 m,<br>3 m<br>effective | Peak<br>convective<br>heating   | 219<br>W/cm²         | Forebody<br>thickness<br>& mass     | TPS thickness:<br>Ablator = 4.32 cm,<br>braised stainless-steel<br>substructure (PH 15-7<br>MO) = 5.08 cm | Deployment<br>method              | (1) mortar (2) drogue<br>parachute (3) pilot<br>parachute                                                                                       |
| Trim L/D<br>(specify<br>trim α)              | 0.37 < L/D <<br>0.44<br>24° < α <28°                            | Base area                              | 12.08 m²                    | Peak<br>radiative<br>heating    | 317<br>W/cm²         | Ablating<br>Ejected                 | Ablated: yes<br>Ejected: no                                                                               | Reference<br>diameter /<br>area   | (1) 4.9 m dia. (2) 2.2 m<br>dia. (3) 25.5 m dia.                                                                                                |
| Control<br>method                            | Roll<br>modulation                                              | Vehicle<br>mass                        | 5424.5<br>kg                | Integrated<br>total<br>heatload | 24122<br>J/cm²       | TPS<br>integration<br>method        | Honeycomb bonded<br>to substructure; cells<br>filled with ablative<br>compound                            | Deployment<br>mach                | ~0.7                                                                                                                                            |
| Ballistic co-<br>eff.                        | ~340 kg/m²                                                      | Payload<br>mass                        | N/A                         | PH stag.<br>pressure            | 0.542<br>atm         | Aftbody<br>material<br>designation  |                                                                                                           | Deployment<br>dynamic<br>pressure |                                                                                                                                                 |
| Peak<br>deceleration                         | 8.79 g                                                          | TPS<br>mass<br>fraction,<br>inc.insul. | 13.7%                       | Peak stag.<br>heating<br>rate   | 527<br>W/cm²<br>peak | Aftbody<br>thickness &<br>mass      |                                                                                                           | Parachute<br>materials            |                                                                                                                                                 |



Figure 2.- Command module ablator thickness.

#### Results, Comparison

Compare to Apollo test data

Rn = 4.69, velocity = 10.4 km/s, Tw = 5000K

Peak stagnation (test data) = 527 W/cm<sup>2</sup>

#### Calculator = 622 W/cm^2

| MISSION: A<br>PLANET: E<br>LAUNCH: M<br>ENTRY: NO | APOLLO AS-50<br>ARTH<br>IOV 9, 1967<br>V 9, 1967                | AS-501 (APOLLO-4)      MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Trest of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Trest of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Trest of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Trest of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.     MISSION DESCRIPTION: Test of Societtical Vehicle and Vehic |                             |                                 |                            |                                     |                                                                                                           |                                   |                                                                                                                                          |
|---------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|----------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Tra                                               | jectory                                                         | Geon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | netry                       | Aero/thermal                    |                            | TPS                                 |                                                                                                           | Parachutes                        |                                                                                                                                          |
| Entry angle                                       | Inertial -6.93<br>Relative-7.19°<br>Entry altitude<br>121.92 km | Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Capsule:<br>33°<br>cone     | Velocity at<br>peak heat        | 10.04<br>km/s              | Forebody<br>material<br>designation | Avco 5026-39 HC                                                                                           | Туре                              | <ol> <li>2 conical ribbon<br/>drogue parachutes,</li> <li>3 ringshot pilot<br/>parachutes, (3) 3 ringsail<br/>main parachutes</li> </ol> |
| Entry<br>velocity:<br>inertial &<br>relative      | Inertial: 11.14<br>km/s<br>Relative: 10.73<br>km/s              | Nose<br>radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.66 m,<br>3 m<br>effective | Peak<br>convective<br>heating   | 219<br>W/cm²               | Forebody<br>thickness<br>& mass     | TPS thickness:<br>Ablator = 4.32 cm,<br>braised stainless-steel<br>substructure (PH 15-7<br>MO) = 5.08 cm | Deployment<br>method              | (1) mortar (2) drogue<br>parachute (3) pilot<br>parachute                                                                                |
| Trim L/D<br>(specify<br>trim α)                   | 0.37 < L/D <<br>0.44<br>24° < α <28°                            | Base area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.08 m²                    | Peak<br>radiative<br>heating    | 317<br>W/cm <sup>2</sup>   | Ablating<br>Ejected                 | Ablated: yes<br>Ejected: no                                                                               | Reference<br>diameter /<br>area   | (1) 4.9 m dia. (2) 2.2 m<br>dia. (3) 25.5 m dia.                                                                                         |
| Control<br>method                                 | Roll<br>modulation                                              | Vehicle<br>mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5424.5<br>kg                | Integrated<br>total<br>heatload | 24122<br>J/cm <sup>2</sup> | TPS<br>integration<br>method        | Honeycomb bonded<br>to substructure; cells<br>filled with ablative<br>compound                            | Deployment<br>mach                | ~0.7                                                                                                                                     |
| Ballistic co-<br>eff.                             | ~340 kg/m²                                                      | Payload<br>mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                         | PH stag.<br>pressure            | 0.542<br>atm               | Aftbody<br>material<br>designation  |                                                                                                           | Deployment<br>dynamic<br>pressure |                                                                                                                                          |
| Peak<br>deceleration                              | 8.79 g                                                          | TPS<br>mass<br>fraction,<br>inc.insul.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.7%                       | Peak stag.<br>heating<br>rate   | 527<br>W/cm²<br>peak       | Aftbody<br>thickness &<br>mass      |                                                                                                           | Parachute<br>materials            |                                                                                                                                          |

Heat\_Flux\_Solver\_v3(70000,10400,4.69,5000)

```
-495.6553449332714
9293.500000301012
Density = 6.205854342383742 kg/m^3
16552468.804516856 Pa
163.36016584768672 atm
576.0577817483268
57413206.62320827
      converged: True
           flag: 'converged'
 function calls: 32
     iterations: 31
           root: 0.02528428165547628
velocity edge 262.9565292169533
Dynamic Viscosity = 0.00013855777596535204
2496.250387576082
Velocitv = 10400
HEAT RATE = 621.534199667807 W/cm^2
6215341.99667807
```

### Results. Heat flux as function of altitude and Mach

Note, 100 test cases took 1.20seconds to complete.

SAN JOSÉ STATE

S



#### Contributions

- Provide students in engineering with an easy to access, easy to use tool to approximate hypersonic shock layer flow conditions and the stagnation point heating on a spherical blunt body nose cone
- Having preliminary values for temperature, pressure, density, heat rates can help determine preliminary TPS sizing, vehicle sizing, mass constraints, etc
- Allows to rapidly perform systems trade studies
- Open source with contribution welcome!



#### Future work

- Implement better data and thus curve fits for chemistry reactions
- Clean up bugs
- Improve user experience, usability
- Convert functions into classes and create callable python library
- Add shear stress calculations
- Improve calculations by computing gamma(T) downstream of shock
- Push revised version to github for public access <u>https://github.com/antonkulinich/Reentry-Peak-Heating-Python-Anton-Kulinich</u> <u>-TFWS</u>



#### Acknowledgments

Dr. Yawo Ezunkpe - Hypersonics Professor

Jesse Franklin and Javaneh Keikha - hypersonics class mates

