

Triem T. Hoang TTH Research Inc. Clifton VA 20124

> Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

GSFC • 2023

- Overview of LHP Self-Excited Temperature Oscillations
- Development of LHP Linear Stability Theory and Test Data Verification
- Analysis of "Dynamical System" Behaviors in LHP Operations
- Stable amd Runtime Efficient Solution Method
- Model Simulations in Search of Hopf Bifurcation Points
- Discussion / Path Forward
- Summary

The research endeavor presented herein was initiated and continually funded by the U.S. Naval Research Laboratory (NRL) from 2011 to 2017.

Loop Heat Pipe (LHP)

- invented in the former Soviet Union in 1970s
- two-phase capillary-pumped heat transport – no moving part

Thermal-Fluid Interaction

- heat exchange with environment via components' casing
- fluid "movement" initiated by phase change
- thermal/fluid dynamics of fluid driven by thermal environment

Nominal Operation

TFAWS 2023 – August 21-25, 2023

High Frequency Low Amplitude (HFLA) Oscillations $\frac{\partial \dot{Q}_{IN}}{\partial \dot{T}_{SAT,SS}} > \frac{\dot{Q}_{SC,SS}}{\dot{Q}_{IN}} G_E + \frac{(Mc_P)_R}{\rho_v \lambda (V_{RES} - V_{VL} - V_{C,SS}^{(2\phi)})} G_{C,SS}^{(2\phi)} + \frac{\tau_E}{\tau_R} \frac{\partial \dot{Q}_{IN}}{\partial T_{W,SS}^{(E)}} = \Psi_{SS}^{(1)}$

Low Frequency High Amplitude (LFHA) Oscillations

$$\frac{\partial T_{W,SS}^{(E)}}{\partial \dot{Q}_{IN}} < -\frac{1}{\frac{\rho_L}{\rho_V} \frac{\tau_E}{\tau_R} G_E \frac{\dot{Q}_{SC,SS}}{\dot{Q}_{IN}} \left(\frac{V_{RES}}{V_{RES} - V_{VL} - V_{C,SS}^{(2\phi)}}\right)} = -\Psi_{SS}^{(2)}$$

where

$$\tau_{\rm E} = \frac{({\rm Mc_P})_{\rm E}}{G_{\rm E} + G_{\rm C,SS}^{(2\phi)}} \qquad \text{and} \qquad \tau_{\rm R} = \frac{({\rm Mc_P})_{\rm R}}{\left(\dot{Q}_{\rm SC,SS}/\dot{Q}_{\rm 1,SS}\right)G_{\rm E}}$$

J		I
<u>Evaporator</u>		
Primary Wick		Casing/Saddle, 1 st Wick
Material:	Sintered Powder Nickel	Attached Thermal M
Outer Diameter:	24.21mm (0.950")	Thermal Mass-to-Va
Inner Diameter:	<u>9.525mm (0.375'')</u>	Conductance G _E :
Active Length:	0.1524m (6")	Saddle: 7.62cm x 15
Max. Pore Radius:	1.2µm	Vapor Grooves
Permeability:	$4.0 \times 10^{-14} \text{m}^2$	Number of Channels
Effective Conductivity:	<u>7.8W/m-K</u>	Hydraulic Diameter:
Transport Lines		
Vapor Line		Liquid Line
Outer Diameter:	5.54mm	Outer Diameter:
Wall Thickness:	0.508mm	Wall Thickness:
Length:	1.0m	Length:
Condenser	Reservoir	
Number of Parallel Passes	1	Outer Diameter:
Heat Exchanger Tubing		Wall Thickness:
Inner Diameter:	3.99mm	Active Length:
Length:	3.81m (200")	Thermal Mass $(Mc_P)_R$:
Conductance $G_{C}^{(MAX)}$:	25W/K	Conductance $G_{\mathbf{p}}$:

Casing/Saddle, 1^{st} Wick, and Attached Thermal MassAttached Thermal Mass:9,080J/KThermal Mass-to-VaporConductance GE:Conductance GE:8.16 W/KSaddle:7.62cm x 15.24cm x 1.91cm Al 6061Vapor GroovesNumber of Channels:4Hydraulic Diameter:0.05"

And Date5.54mmuter Diameter:5.54mmVall Thickness:0.508mmength:1.2264m (incl. bayonet)Voir43.94mmer Diameter:43.94mm1 Thickness:2.20mmve Length:0.08023mrmal Mass (Mc_p)_p:190J/K

22W/K

Linear Stability Theory has been verified against test data from various LHPs

Physical Dimensions and Properties of NASA/JPL LHP

Previous Research at U.S. Naval Research Laboratory

r nysical Dimensions and r oper des or r (ttl Litt				
<u>Evaporator</u>				
Primary Wick Ca		Casing/Saddle, 1 st Wick, and Attached Thermal Mass		
Material:	Sintered Powder Nickel	Thermal Mass of Heater		
Outer Diameter:	24.21mm (0.950")	Plate + Saddle + Casing:	-1,575J/K ► 8kJ/K	
Inner Diameter:	<u>9.525mm (0.375'')</u>	Thermal Mass-to-Vapor		
Active Length:	0.3048m (12")	Conductance G _E :	<u>35.80 W/K</u>	
Max. Pore Radius:	1.3µm	Vapor Grooves		
Permeability:	$1.3 x 10^{-14} m^2$	Number of Channels:	<u>4</u>	
Effective Conductivity:	<u>7.80W/m-K</u>	Hydraulic Diameter:	<u>0.05 ''</u>	
Transport Lines				
Vapor Line		Liquid Line		
Outer Diameter:	4.76mm	Outer Diameter:	4.76mm	
Wall Thickness:	0.508mm	Wall Thickness:	0.508mm	
Length:	1.524m	Length:	1.96m (incl. bayonet)	
<u>Condenser</u>	<u>F</u>	Reservoir		
Number of Parallel Passes	1	Outer Diameter:	25.4mm	
Heat Exchanger Tubing		Wall Thickness:	<u>1.27mm</u>	
Inner Diameter:	3.744mm	Active Length:	0.127m	
Length:	2.032m (80")	Thermal Mass $(Mc_P)_R$:	<u>135.80J/K</u>	
Conductance $G_{C}^{(MAX)}$:	<u>12.00W/K</u>	Conductance G _R :	<u>16.50W/K</u>	

No LFHA Oscillation with Thermal Mass < 1.93kJ/K LFHA Self-Excited Oscillation Regimes 20W – 165W with Attached Thermal Mass → ∞ 30W – 145W with Attached Thermal Mass = 8kJ/K

Research at Naval Research Laboratory – AIAA-2017-4695

Attached Thermal Mass = 13kJ/K and Sink Temps. = -10°C

TFAWS 2023 – August 21-25, 2023

NASA

Primary Objectives

- "deep dive" into dynamical system behaviors of LHP thermal-fluid interaction in all plausible operating scenarios/regimes
- develop accurate/efficient analytical tools to predict LHP system performance for large number of conditions (even in uncharted territories)
- eliminate/mitigate ill effects of LHP (temperature) oscillations
- Technical Approach
 - simplify governing equations by exploiting unique characteristics of problems at hand
 - select suitable solution scheme(s) that are numerically stable and runtime efficient
 - conduct far-reaching analytical investigation of LHP performance in relevant conditions
 - search for sensible methods to mitigate/control LHP oscillations

Fluid "Dynamical" System

Heat Exchange with Environment

$$\tau_{3} \frac{d\overline{T}_{SAT}^{(E)}}{d\overline{t}} = \frac{1}{\left(\frac{\partial\overline{\rho}_{V}}{\partial\overline{T}}\right)_{SAT} \left(\overline{V}_{VL} + \overline{V}_{C}^{(2\phi)}\right)} \left(\frac{\overline{\dot{Q}}_{1} - \overline{\dot{Q}}_{C}^{(2\phi)}}{\overline{\lambda}} - \overline{\rho}_{E}^{(V)} \frac{d\overline{V}_{C}^{(2\phi)}}{d\overline{t}}\right) \qquad \qquad \frac{\partial\overline{h}_{F}}{\partial\overline{t}} + \overline{m}_{L} \frac{\partial\overline{h}_{F}}{\partial\overline{\xi}} + \overline{g}_{F^{-\infty}}(\overline{T}_{F} - \overline{T}_{\infty}) = 0$$

$$\tau_{4} \frac{dT_{SAT}^{(R)}}{dt} = \frac{1}{\left(\frac{\partial\overline{\rho}_{V}}{\partial\overline{T}}\right)_{SAT} \left(\overline{V}_{LHP}^{(V)} - \overline{V}_{VL} - \overline{V}_{C}^{(2\phi)}\right)} \left(\frac{-\eta\overline{\dot{Q}}_{SC}^{(MAX)} + \overline{\dot{Q}}_{2} + \overline{\dot{Q}}_{R}^{(W)} + \overline{\dot{Q}}_{R}^{(L)}}{\overline{\lambda}} + \overline{\rho}_{R}^{(V)} \frac{d\overline{V}_{C}^{(2\phi)}}{d\overline{t}}\right)$$

Multi-Scale Perturbation Problem

$$\frac{d\overline{T}_{k}}{d\overline{t}} = G_{j}(\overline{T}_{k}, \overline{T}_{k}', \overline{X}_{i}, \overline{X}_{j}', \overline{X}_{j}, \overline{X}_{j}', \overline{t})$$

$$\epsilon \frac{d\overline{X}_{i}}{d\overline{t}} = F_{i}(\overline{T}_{k}, \overline{T}_{k}', \overline{X}_{i}, \overline{X}_{i}', \overline{X}_{j}, \overline{X}_{j}', \overline{t})$$

$$\epsilon^{2} \frac{d\overline{X}_{j}}{d\overline{t}} = F_{j}(\overline{T}_{k}, \overline{T}_{k}', \overline{X}_{i}, \overline{X}_{i}', \overline{X}_{j}, \overline{X}_{j}', \overline{t})$$

for Thermal Nodes k's in time scale $t_{\mbox{\scriptsize REF}}$

for LHP liquid nodes i's in time scale ϵt_{REF}

for LHP vapor nodes j's in time scale $\epsilon^2 t_{REF}$

Asymptotic Expansion Series Solutions

TFAWS 2023 - August 21-25, 2023

- Adaptive Runge-Kutta-Fehlberg
- Model Assumptions for Simulations
 - incompressible flow (Mach No. < 0.2)
 - no mechanical moving part
 - a successful LHP start-up precedes loop operations to be simulated
 - wicks in working condition
 - single-pass condenser/subcooler
 - no gravity-assist mode of operation

Computer Code

- written in BASIC as part of Excel Macro
- spreadsheets utilized as I/O medium
- thermophysical properties of working fluid from NIST database

Analysis of Hopf Bifurcations in NRL LHP

Attached Thermal Mass = 8.0kJ/K

NASA

Analysis of Hopf Bifurcations in NRL LHP

Attached Thermal Mass = 8.0kJ/K

Analysis of Hopf Bifurcations in NRL LHP

16

Range of input power for LFHA Oscillations is reduced with decreasing attached thermal mass

TFAWS 2023 - August 21-25, 2023

NASA

Look Ma, No LFHAs!

No LFHA with thermal mass of 1,950 J/K or less

TFAWS 2023 - August 21-25, 2023

Discussion

LHP operations exhibit many fundamental characteristics of nonlinear dynamical systems

Selkov Model of Glycolysis

$$\frac{dx}{dt} = -x + ay + x^2y$$

$$\frac{dy}{dt} = b - ay - x^2y$$

Hopf bifurcations

similar to those of

LFHA oscillation

In LHP operation

Brusselator Model of Autocatalytic Reaction

Phenomena in other dynamical systems may be drawn upon to study LHP oscillatory behaviors

TFAWS 2023 - August 21-25, 2023

- Multi-Scale Singular Perturbation Method
 - inspired by *Prandtl's Boundary Layer Theory* ⇒ isolate/separate computational domains into somewhat independent regimes for specific sets of characteristics
 - LHP fluid subsystem has at least two distinct time scales: one for vapor dynamics and one for liquid counterparts (*in addition to those of thermal environment*)
 - modeling of LHPs is perhaps NOT as intimidating as thought
- LHP Dynamical System Analysis
 - verified Hopf Bifurcations in LHP operation
 - characteristics almost identical to those of many other systems \Rightarrow leveraged to serve as roadmap for future research
- Potential operational issues to be investigated
 - externally-forced periodic operating conditions \rightarrow resonance?
 - multiple LHPs thermally-coupled in Thermal Control System
 - unstable "subcritical" Hopf bifurcation in oscillatory regimes