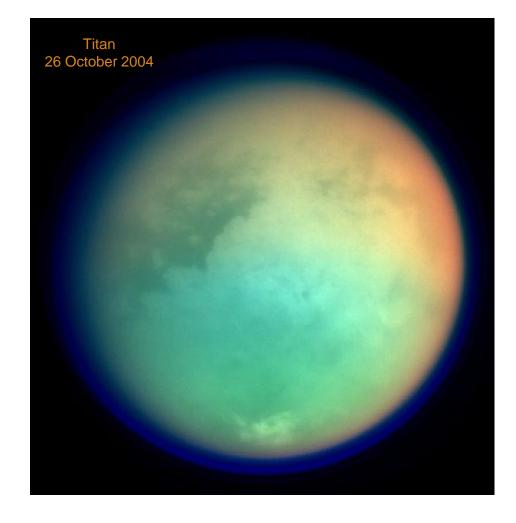
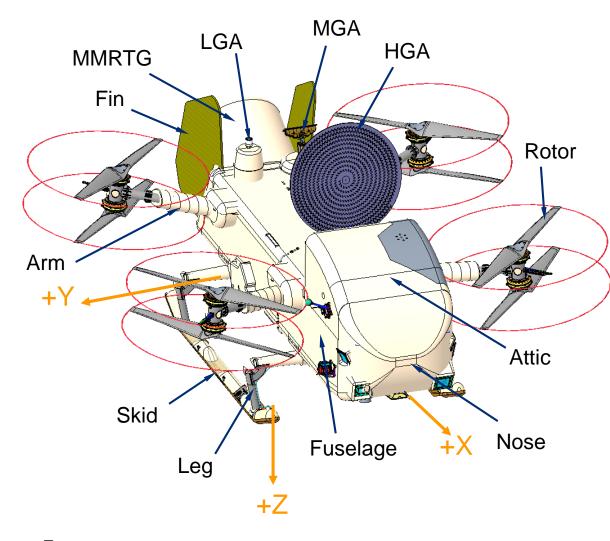
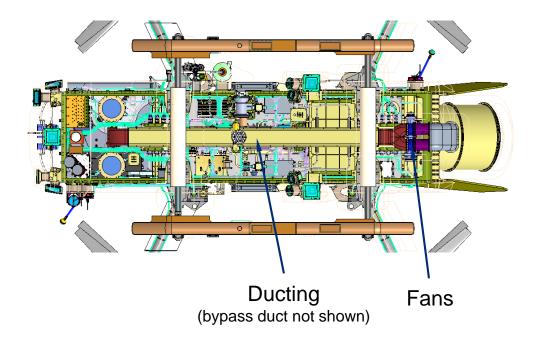
Dragonfly Lander:

Thermal Controller Design

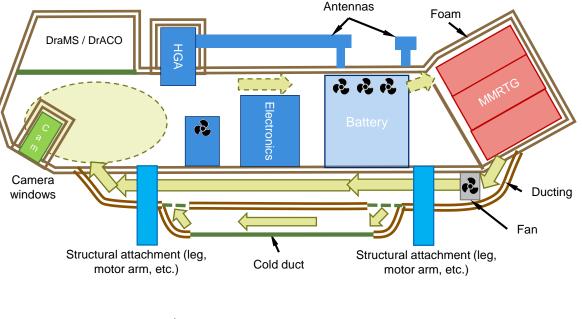

Allan Holtzman Maria Castaño


A relocatable lander to explore Titan's prebiotic chemistry and habitability


Titan Environment

- Surface temperature = 94 K = -290°F
 - Very nearly constant over diurnal and seasonal cycles
 - Radiative heat transfer negligible compared to convection
- Surface pressure = 1.5 bar
 - Relatively thick atmosphere results in significant convection
- Surface gravity = $1.35 \text{ m/s}^2 = 0.14 \text{ g}$
 - 14% of gravity at Earth's surface
 - 83% of gravity at Moon's surface
- Titan weather is very stable
 - Rainfall is rare (methane)
 - Surface winds typically (99%) <1 m/s
 - External convection ~ 5 W/m²/K (dead calm) to 15 W/m²/K (windy)

Dragonfly Lander Overview


DRAGONFLY Pre-Decisional

Lander Thermal Control Architecture

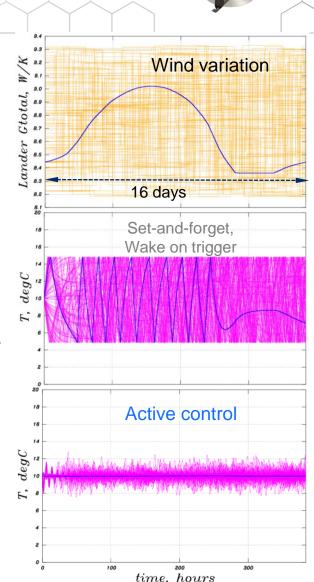
The MMRTG is the heart of Dragonfly

DRAGONFLY Pre-Decisional

- Powers the Lander and the Flight System
 - Electrical power in hibernation is limited, fan allocation is 15 W NTE
- Radioactive power source generates ~ 2 kW of "waste" heat
 - To save electrical power, there are no electrical heaters active during hibernation
- Pumped fluid loop manages MMRTG, battery, and Flight System temperatures during cruise
 - Heat distributed throughout the spacecraft keeps components warm, with most heat dumped overboard via radiators
- Fan with ducting distributes MMRTG heat to the rest of the Lander
 - Convection takes heat off the MMRTG to control its fin root temperature
 - The heat distributed throughout the Lander keeps internal components warm, including the battery
- Lander temperatures are controlled with a cold duct trim device while on Titan in hibernation
 - The battery has tight temperature limits which constrains the Lander
 - The MMRTG temperature must also be controlled within a tight tolerance to maximize its electrical power generation
 - Thermal trim devices adjust the Lander internal temperature in response to changes in external and internal conditions
 - Diverter valves, located fore and aft of the Lander ducting, shunt warm gas through the bypass duct

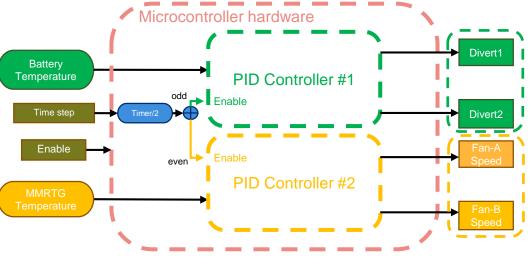
The closed-open circulatory path for the Lander is reminiscent of the circulatory system of a real dragonfly, and for insects on Earth in general

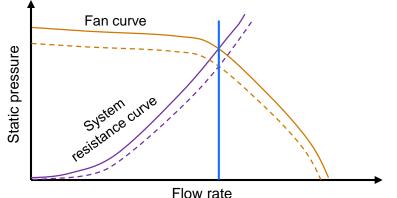
Premise


- Wind details on Titan not known
 - Simulations use timing to which Lander will be sensitive
 - Possibilities outside of this are benign
- Bypass duct trim device performance is not yet known
 - **Simulations assume conservatively high coupling** of the displacement to system flow rate
- Simulations conservatively assume worst-case inputs

Short period wind variation		Long period wind variation
Lander doesn't care	Tales of interest	Infrequent wakeups
3 hr		2 days

Lander Thermal Control

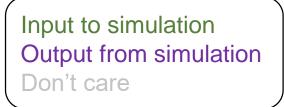

- Lander needs to adjust to changing thermal conditions, mostly Titan winds
 - Winds can go from 2 m/s max average at surface to dead-calm conditions
 - Randomly generated wind inputs (at frequencies to which the Lander is sensitive)
 - Reference wind profile also shown
- Proposal baseline was set-and-forget control method
 - Lander wakes up on battery temperature reaching hi/lo trigger
 - Trim device setting moved far enough to cause favorable response
 - Problem is, if the winds vary significantly on ~ 1 day timescale, Lander wakes up ~ 3 times/Earth day (@ 30 minutes per wake up) costs power
- Current baseline is active control
 - A microcontroller remains active in hibernation to control the Lander temperature
 - SISO control, battery temperature as input, trim device position as output
 - Controller moves the trim device as needed at ~ 10 min period



Lander MIMO Thermal Control

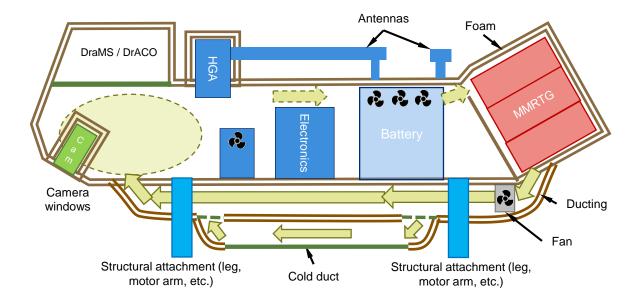
- Cold bypass duct may couple the battery and MMRTG temperature response
 - Battery/Lander temperature is kept constant by diverting gas through the bypass duct in the event of changes to external wind
 - The change in the diverter position may perturb the system resistance, causing the flow rate to change
 - MMRTG fin root temperature is sensitive to flow rate
- Control design for a Multi-Input, Multi-Output (MIMO) system
 - Fan controller is variable speed already (cruise pumps needed that, and it's the same controller)
 - Battery will not be significantly influenced by small changes in flow rate, so the dependence is one-way
 - Therefore, time-sharing the microcontroller to achieve both battery and MMRTG thermal control looks feasible
 - Two controllers (PID #1, PID #2)

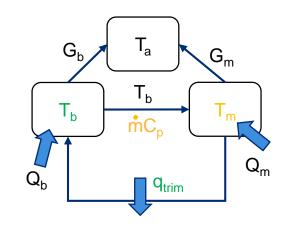
NFLY Pre-Decisional



Trim Device Requirements Summary

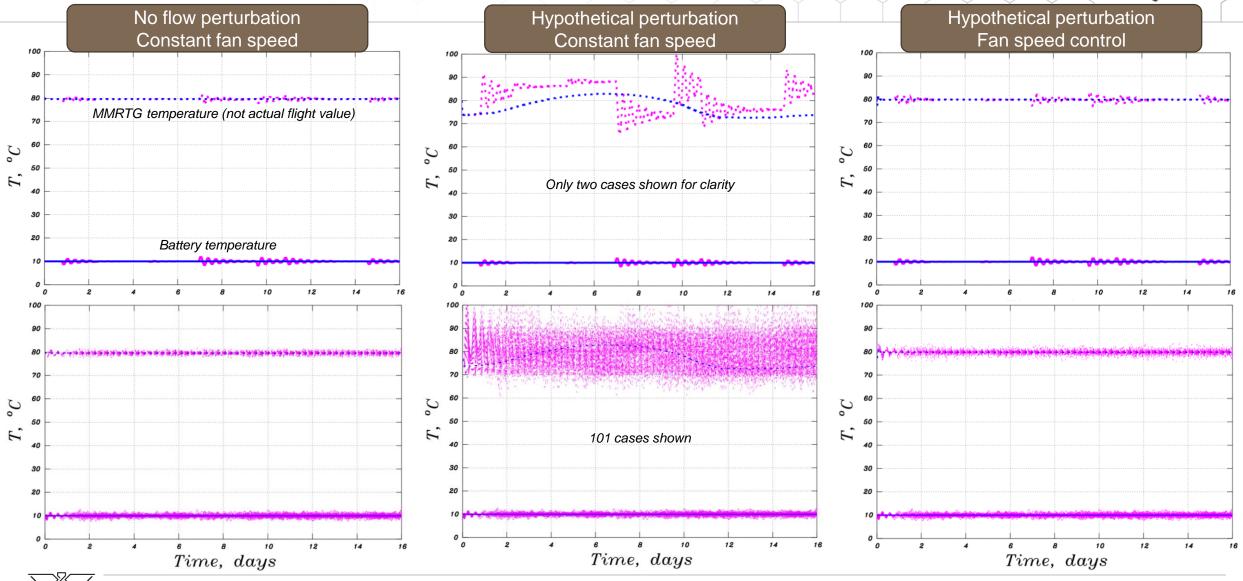
- Heat rejection capacity
 - ≥ 810 W (TBR) for worst-case hot Titan environmental conditions (includes an additional 145W of margin for precooling during transient cases)
- Device dimension and interface
 - Minimal impact to other systems and lander mass
- Closed heat leak
 - ≤ 36 W when closed during worst-case cold Titan environmental conditions (largely a function of how well the device is sealed)
- Control
 - Opening: resolution of 2% airflow percentage for cold air duct up to 40% (TBR), correlation of opening vs air percentage required - concept dependent
 - **Control electronics**: Be able to report displacement of the device and fan speed to the Lander (TBD, likely not required)
 - Response: from detection to response (including from a fully closed state to fully open or the reverse) in ≤ 10 minutes (TBR)
- Reliability
 - Cycles: withstand 5000 (TBD) cycles (~ several times per Earth day during the surface phase of the mission)


- Operation
- Using for normal hibernation for Lander temperature control, pre-cooling of DraMS, and other science activities
- Not open during powered flight (TBD), saltation experiments and rain events (TBD)
- Mass
- ≤7 kg trim device and drive electronics
- Power
 - Power: Trim device controller and motors power consumption NTE avg 2.6
 W during Titan hibernation
 - Pressure drop: minimize the ducting pressure drop concept dependent



Lander Thermal Control Simulation

- Simple model created to begin evaluation of possible control implications for the trim device
 - Plant is a two-node model, coupled ODEs
 - Lander bulk temperature/battery
 - MMRTG component
- Control algorithms are PI (Proportional-Integral)
 - Appropriate for this kind of system
 - Similar to greenhouse temperature control
 - Battery temperature for the first control loop
 - MMRTG fin root temperature for the second control loop
 - Control alternates between the two, low frequency ~
 cycle per 10 minutes



Simulation Results

DRAGÖNFLY

Conclusions and Path Forward

- Active control is a good strategy for the Lander
 - Costs a bit more power during hibernation, but overall is lower energy consumption than for set-and-forget control
- If bypass duct trim device couples battery and MMRTG, then upgrade to MIMO control
 - Excellent control of both the battery and MMRTG temperature, even with high coupling assumed
 - No appreciable increase in hibernation power consumption
 - No appreciable increase in Lander mass
 - Feedback control for the win!
- Work to go
 - Determine if MIMO control is needed
 - Simulation development
 - Trim device capacity based on analysis and test data
 - System flow rate as a function of trim device displacement
 - Displacement and power draw to predict energy consumption and device cycling
 - Definition of control parameters (and levels) to be able to be changed post-launch
 - Optimization of the control parameters
 - Details of trim device design, operation, and robustness
 - Test early, test often, test as you fly

DRAGØNFLY