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• Surface temperature = 94 K = –290°F

- Very nearly constant over diurnal and seasonal cycles

- Radiative heat transfer negligible compared to convection

• Surface pressure = 1.5 bar

- Relatively thick atmosphere results in significant convection

• Surface gravity = 1.35 m/s2 = 0.14 g

- 14% of gravity at Earth’s surface

- 83% of gravity at Moon’s surface

• Titan weather is very stable

- Rainfall is rare (methane)

- Surface winds typically (99%) <1 m/s

- External convection ~ 5 W/m2/K (dead calm) to 15 W/m2/K 

(windy)
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Dragonfly Lander Overview
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• The MMRTG is the heart of Dragonfly

- Powers the Lander and the Flight System

 Electrical power in hibernation is limited, fan allocation is 15 W NTE

- Radioactive power source generates ~ 2 kW of “waste” heat

 To save electrical power, there are no electrical heaters active during hibernation

• Pumped fluid loop manages MMRTG, battery, and Flight System 
temperatures during cruise

- Heat distributed throughout the spacecraft keeps components warm, with 
most heat dumped overboard via radiators

• Fan with ducting distributes MMRTG heat to the rest of the Lander

- Convection takes heat off the MMRTG to control its fin root temperature

- The heat distributed throughout the Lander keeps internal components warm, 
including the battery

• Lander temperatures are controlled with a cold duct trim device while on 
Titan in hibernation

- The battery has tight temperature limits which constrains the Lander

- The MMRTG temperature must also be controlled within a tight tolerance to 
maximize its electrical power generation

- Thermal trim devices adjust the Lander internal temperature in response to 
changes in external and internal conditions

 Diverter valves, located fore and aft of the Lander ducting, shunt warm gas through the 
bypass duct
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Lander Thermal Control Architecture
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• Wind details on Titan not known

- Simulations use timing to which Lander will be sensitive

- Possibilities outside of this are benign

• Bypass duct trim device performance is not yet known

- Simulations assume conservatively high coupling of the 

displacement to system flow rate

• Simulations conservatively assume worst-case inputs
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• Lander needs to adjust to changing thermal conditions, mostly Titan winds

- Winds can go from 2 m/s max average at surface to dead-calm conditions

- Randomly generated wind inputs (at frequencies to which the Lander is sensitive)

- Reference wind profile also shown

• Proposal baseline was set-and-forget control method

- Lander wakes up on battery temperature reaching hi/lo trigger

- Trim device setting moved far enough to cause favorable response

- Problem is, if the winds vary significantly on ~ 1 day timescale, Lander wakes up ~ 

3 times/Earth day (@ 30 minutes per wake up) – costs power

• Current baseline is active control

- A microcontroller remains active in hibernation to control the Lander temperature

- SISO control, battery temperature as input, trim device position as output

- Controller moves the trim device as needed at ~ 10 min period
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Lander MIMO Thermal Control
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• Cold bypass duct may couple the battery and MMRTG 

temperature response

- Battery/Lander temperature is kept constant by diverting gas 

through the bypass duct in the event of changes to external wind

- The change in the diverter position may perturb the system 

resistance, causing the flow rate to change

- MMRTG fin root temperature is sensitive to flow rate

• Control design for a Multi-Input, Multi-Output (MIMO) system

- Fan controller is variable speed already (cruise pumps needed 

that, and it’s the same controller)

- Battery will not be significantly influenced by small changes in 

flow rate, so the dependence is one-way

- Therefore, time-sharing the microcontroller to achieve both 

battery and MMRTG thermal control looks feasible

 Two controllers (PID #1, PID #2)
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• Heat rejection capacity

- ≥ 810 W (TBR) for worst-case hot Titan environmental conditions (includes 

an additional 145W of margin for precooling during transient cases)

• Device dimension and interface 

- Minimal impact to other systems and lander mass

• Closed heat leak

- ≤ 36 W when closed during worst-case cold Titan environmental conditions 

(largely a function of how well the device is sealed)

• Control

- Opening: resolution of 2% airflow percentage for cold air duct up to 40% 

(TBR), correlation of opening vs air percentage required - concept 

dependent

- Control electronics:  Be able to report displacement of the device and fan 

speed to the Lander (TBD, likely not required)

- Response: from detection to response (including from a fully closed state 

to fully open or the reverse) in ≤ 10 minutes (TBR)

• Reliability

- Cycles: withstand 5000 (TBD) cycles (~ several times per Earth day during 

the surface phase of the mission)

• Operation

- Using for normal hibernation for Lander temperature control,  pre-cooling of 

DraMS, and other science activities

- Not open during powered flight (TBD), saltation experiments and rain 

events (TBD)

• Mass

- ≤7 kg trim device and drive electronics 

• Power

- Power: Trim device controller and motors power consumption NTE avg 2.6 

W during Titan hibernation

- Pressure drop: minimize the ducting pressure drop – concept dependent
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• Simple model created to begin evaluation of 

possible control implications for the trim device

- Plant is a two-node model, coupled ODEs

- Lander bulk temperature/battery

- MMRTG component

• Control algorithms are PI (Proportional-Integral)

- Appropriate for this kind of system

- Similar to greenhouse temperature control

- Battery temperature for the first control loop

- MMRTG fin root temperature for the second control loop

- Control alternates between the two, low frequency ~ 

cycle per 10 minutes
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Lander Thermal Control Simulation
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Simulation Results
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• Active control is a good strategy for the Lander

- Costs a bit more power during hibernation, but overall is lower energy consumption than for set-and-forget control

• If bypass duct trim device couples battery and MMRTG, then upgrade to MIMO control

- Excellent control of both the battery and MMRTG temperature, even with high coupling assumed

- No appreciable increase in hibernation power consumption

- No appreciable increase in Lander mass

- Feedback control for the win!

• Work to go

- Determine if MIMO control is needed

- Simulation development

 Trim device capacity based on analysis and test data

 System flow rate as a function of trim device displacement

 Displacement and power draw to predict energy consumption and device cycling

 Definition of control parameters (and levels) to be able to be changed post-launch

 Optimization of the control parameters

- Details of trim device design, operation, and robustness

- Test early, test often, test as you fly
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Conclusions and Path Forward
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