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FBCE – Experiment Overview

From a presentation made by Prof. Issam Mudawar, ASGSR Conference, 2022
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FBCE Science Objectives

• The proposed research aims to develop an integrated two-phase 
flow boiling/condensation facility for the International Space 
Station (ISS) to serve as primary platform for obtaining two-
phase flow and heat transfer data in microgravity. 

Key objectives are:

▪ Develop experimentally validated, mechanistic model for 
microgravity flow boiling critical heat flux (CHF) and 
dimensionless criteria to predict minimum flow velocity
required to ensure gravity-independent CHF

▪ Develop experimentally validated, mechanistic model for 
microgravity annular condensation and dimensionless criteria 
to predict minimum flow velocity required to ensure gravity-
independent annular condensation; also develop correlations 
for other condensation regimes in microgravity

Applications of FBCE include:
➢ Rankine Cycle Power Conversion System for Space

➢ Two Phase Flow Thermal Control Systems and Advanced Life Support 
Systems

➢ Gravity Insensitive Vapor Compression Heat Pump for Future Space 
Vehicles and Planetary Bases 

➢ Cryogenic Liquid Storage and Transfer

TFAWS 2023 – August 21-25, 2023 4



FBCE Hardware on Fluid System Schematic
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Top Level Science Requirements and Constraints
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•Fluid System Capability
▪ Delivers flow rates between 2 and 14 g/s of  nPFH for Condensation Experiments and 2 to 40 

g/s for Flow Boiling Experiments

▪ Delivers up to 1440 W to the fluid from the bulk heater and 340 W from the FBM heater

▪ Delivers a system pressure of  130 to 160 kPa

▪ Volume increase is accommodated with an accumulator

▪ Delivers the required thermodynamic conditions of  the fluid at the entrance of  the test modules 
(subcooled, saturated and two-phase mixture)

▪ Provides the fluid cooling function via ISS ITCS cooling water

▪ Provides degassing function for the test fluid

•Constraints
▪ Limitation on the available power 

▪ ITCS cooling water flow rate up ~50 g/s to and returning stream temperature requirement of  
40-49 ºC

▪ Volume constraint 91.44×121.92×48.28 cm3 (36×48×19 in3)



FBCE in the Fluid Integrated Rack
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The Flow Boiling Module
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More on the Flow Boiling Module
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Flow Visualization/Imaging

▪ Analysis of the interfacial physics of flow boiling is 

possible by flow visualization using high-speed video 

photography of all heat flux increments from a 

minimum until (and including) CHF. 

▪ Visualization enabled by transparent polycarbonate 

wall on FBM

▪ Transparent polycarbonate allows for excellent visual 

access to within the FBM’s heated section. 

▪ All three plates were further vapor polished to 

minimize vignetting effects produced by the opaque 

copper strips and O-rings. 

▪ CMOS sensor, each pixel of which is a square of size 

5.5 μm ×5.5 μm. 

▪ The CMOS sensor has a fill factor of 100%, i.e ., the 

pixels are arranged with no physical distance between 

them. 

▪ Spatial resolution of at least ∼90 μm was achieved 
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• High-speed video camera is pointed at one of the 
transparent channel walls with a channel height of H 
= 5.0 mm

• Opposite channel wall is backlit with blue light 
emitting diodes (LEDs) in tandem with a light-
shaping diffuser fitted with an intermediate Teflon 
sheet which is necessary due to the extremely short 
light transmission distance 



Flight Experimental Procedure

▪ Experiments performed via commanding from NASA-GRC Telescience Center

▪ Parameters like desired pressure, inlet temperature, bulk heater power, FBM 

power, flow rates of nPFH and water were obtained from the Experiment 

Parameter Master Table (EPMT)

▪ EPMT was uploaded to ISS and test points parameters can be taken directly 

from the EPMT (Run by ID) or uploaded individually (Run by Parameter)
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A Flow Boiling Run
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Flow Visualization
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Type 1 

Images

Type 2 

Images

Imaging Types

1. Type 1 Images

➢ Evolution of average flow pattern in 

FBM with increasing heat flux along 

boiling curve from ONset of Boiling 

(ONB) →→→→until reaching Critical 

Heat Flux CHF

2. Type 2 Images

➢ Images sequenced over specific time 

interval for specific heat fluxes 

• Capture of Transients



Flow Visualization-Effects of Inlet Subcooling
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∆𝑻𝑺𝒖𝒃𝒄𝒐𝒐𝒍 = 𝟐. 𝟏 ℃ 𝟔. 𝟎𝟔 ℃ 𝟗. 𝟔℃ 𝟏𝟓℃
𝒒𝑪𝑯𝑭
′′ = 𝟐𝟓. 𝟑𝟑 Τ𝑾 𝒄𝒎𝟐 𝟐𝟓. 𝟐𝟓 𝟐𝟑. 𝟖𝟑 𝟐𝟒. 𝟑𝟏

Flow Parameters: 799.96 ≤ 𝐺 ≤ 803.13
𝑘𝑔

𝑚2.𝑠
; 𝑝𝑖𝑛 ≅ 150 𝑘𝑃𝑎;



Flow Visualization-Effects of Inlet Subcooling Summary

TFAWS 2023 – August 21-25, 2023 15

High Inlet Subcooling Low Inlet Subcooling
Interfacial Flow ▪ Thinner bubble boundary layers and vapor 

layers. 

▪ Transitions in flow regime take place 

further downstream and with increased 

heat fluxes. 

▪ Bubbles are extremely small at lower heat 

fluxes

▪ As CHF is approached by increasing the 

heat flux, the vapor layer develops peaks 

that extend to the opposite wall of  FBM. 

▪ At CHF, wetting fronts are still present 

upstream of  the heated section. 

▪ Thicker bubble boundary layers and 

vapor layers.  

▪ Transitions in flow regime take place 

further upstream and at lower heat 

fluxes. 

▪ At lower heat fluxes, bubbles are larger 

and do coalesce. 

▪ As CHF is approached by increasing the 

heat flux, the vapor layer almost 

completely occupies the channel’s cross 

section. 

▪ At CHF, wetting fronts no longer exist 



Flow Visualization-Effects of Mass Flow Rate @ High ∆𝑻𝑺𝒖𝒃𝒄𝒐𝒐𝒍
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Flow Visualization-Effects of Mass Flow Rate @ Low ∆𝑻𝑺𝒖𝒃𝒄𝒐𝒐𝒍
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Flow Visualization-Effects of Mass Flow Rate Summary
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Low Mass Flow Rate High Mass Flow Rate
Interfacial Flow ▪ Thicker bubble boundary layers and vapor 

layers. 

▪ Larger vapor structures

▪ Transitions in flow regime take place 

further upstream and at lower heat fluxes. 

▪ At CHF with high subcooling, the heated 

wall is completely insulated with a 

continuous wavy vapor layer with absence 

of wetting fronts

▪ At CHF with low subcooling, the heated 

wall is completely embedded in a vapor 

layer that is continuous with a 

characteristically longer wavelength

▪ Thinner bubble boundary layers and 

vapor layers.  

▪ Smaller vapor structures

▪ Transitions in flow regime take place 

further downstream and at higher heat 

fluxes. 

▪ At CHF with high subcooling, a single 

phase region forms upstream 

▪ At CHF with low subcooling, a vapor 

layer of  smaller wavelength exists along 

the heated wall with reduced wetting 

fronts and highly turbulent interfacial 

structures downstream. 



Flow Visualization Type 2-Effects of Inlet Subcooling
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Observations
Lower Heat Flux

▪ Consistent movement and growth of the 
vapor patches is observed 

▪ Wetting front is observed to slide along the 
heated wall in the flow direction, and new 
wetting fronts form upstream as the wetting 
front downstream leave 

Higher Heat Flux

▪ Wavy vapor layer is shown to develop and 
grow in the streamwise direction with 
periodic wetting fronts along the heated 
wall. 

▪ The growth rate and production of larger, 
more continuous vapor layers is accelerated 
by the increase heat flux  

▪ Wetting fronts are observed to accelerate 
along the heated wall due to boiling within 
them. 

𝑣 =
𝑑𝑥

𝑑𝑡
≅

107 − 78 𝑚𝑚

6 × 2.5 10−3𝑠
×

1𝑚

1000 𝑚𝑚
= 1.93 Τ𝑚 𝑠

𝑣 =
𝑑𝑥

𝑑𝑡
≅

73 − 54 𝑚𝑚

6 × 2.5 10−3𝑠
×

1𝑚

1000 𝑚𝑚
= 1.27 Τ𝑚 𝑠

𝑎 =
𝑑𝑣

𝑑𝑡
≅ 0.033 𝑚/𝑠2

Note that Superficial Liquid Velocity= 
ሶ𝑚

𝜌𝐴
= 0.5 𝑚/𝑠



Flow Visualization Type 2-Effects of Inlet Subcooling

Observations
Lower Heat Flux

▪ Clear upstream single-phase length is 
observed followed by  bubble nucleation 
on the heated wall

▪ Some bubbles condensation observed as 
bubbles slide downstream due to the high 
degree of subcooling

▪ Periodicity in the shape of the vapor 
waves is noted.

Higher Heat Flux

▪ Bubble nucleation occurs further 
upstream, and less condensation occurs as 
bubbles produced upstream continuously 
grow into the wavy vapor layers. 

▪ Vapor grows in an alternating fashion of 
thicker and thinner patches  

▪ Acceleration of fronts depend on the 
dynamics of the vapor structures that are 
downstream and upstream. 
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𝑣 =
𝑑𝑥

𝑑𝑡
≅

86 − 68 𝑚𝑚

5 × 2.5 10−3𝑠
×

1𝑚

1000 𝑚𝑚
= 1.44 Τ𝑚 𝑠

𝑣 =
𝑑𝑥

𝑑𝑡
≅

115 − 92 𝑚𝑚

3 × 2.5 10−3𝑠
×

1𝑚

1000 𝑚𝑚
= 3.07 Τ𝑚 𝑠

𝑎 =
𝑑𝑣

𝑑𝑡
≅ 0.093 𝑚/𝑠2



Ground Observations from 

Mission Sequence Tests 

• Vapor patches move at a more 

uniform/constant velocity 

compared to microgravity

• Vapor waves tend to move 

faster in 1 g vertical up-flow 

compared to microgravity

• Similar flow characteristics are 

observed in one g compared to 

microgravity such as

– Thicker boundary and vapor 

layers at lower flow rates versus 

thinner ones at high flow rate

Quick Comparison with Mission Sequence Tests Results
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𝑣 =
𝑑𝑥

𝑑𝑡
≅

114.6 − 74 𝑚𝑚

9 × 1.5 10−3𝑠
×

1𝑚

1000 𝑚𝑚
= 3 Τ𝑚 𝑠

𝑣 =
𝑑𝑥

𝑑𝑡
≅

114.6 − 84 𝑚𝑚

5 × 1.5 10−3𝑠
×

1𝑚

1000 𝑚𝑚
= 4.26 Τ𝑚 𝑠

Superficial Liquid Velocity 

G=1600 kg/m2.s

1 m/s→→→→→→→ →→→→

G=3200 kg/m2.s

2 m/s →→→→→→→ →→→→

Measured Vapor Velocity



Flow Oscillation and Instabilities
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Boiling Curves
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Surface Temperature
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Temperature and heat flux data are 

combined to calculate the HTC 



Local Heat Transfer Coefficient
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Trends of Tw and h
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High Inlet Subcooling Low Inlet Subcooling
Local Wall 

Temperature

Heat Transfer 

Coefficient

▪ Tw is lower along the channel for similar 

heat fluxes q”

▪ Lower heat transfer coefficient

▪ At high heat flux percentages, the upstream 

part of  streamwise h profile is not degraded. 

▪ Tw is higher along the channel for 

similar heat fluxes q”

▪ Higher heat transfer coefficient

▪ At high heat flux percentages, the entire 

streamwise h profile is severely 

degraded. 

Low Mass Velocity/Flow Rate High Mass Velocity/Flow Rate

Local Wall 

Temperature

Heat Transfer 

Coefficient

▪ Tw is higher along the channel for similar 

heat fluxes q”

▪ Lower heat transfer coefficient

▪ Streamwise h profile is decreased at high 

percentages of  CHF

▪ Tw is lower along the channel for similar 

heat fluxes q”

▪ Higher heat transfer coefficient

▪ At high heat flux percentages, h profile 

degradation is limited to the channel 

middle and exit 



Concluding Remarks

• Presented a sample of study areas of flow boiling 

– Imaging

– Heat Transfer

• Test data is used to generate design correlations that enable calculation of heat 

transfer coefficient HTC and the Critical Heat Flux CHF in flow boiling

• Imaging and data are used to validate CFD models 

• Testing with FBM ended in July

• FBM module will be replaced by the condensation module for heat transfer CM-

HT

• Flight testing with CM-HT is planned for September time frame

• Plans to return FBM to Earth and perform a thorough evaluation of the module
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Flow Boiling and Condensation Experiment

• Thank you for your attention

• Questions?
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