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Electrohydrodynamics

EHD: Interactions between electrical fields
and flow fields
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EHD Phenomenon
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charges gradients of electrical for compressible fluids
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Note: Coulomb force pumps the fluid (i.e., EHD pumping) while the di-
electro-phoretic (DEP) force separates the vapor phase from the liquid
phase.
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EHD Pumping

- Interaction of electric fields and free charges in a
dielectric fluid

 Coulomb force main mechanism of this interaction
« Electric field and free charges required
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Electric Charge Generation

ion-drag pumping

 Direct injection; ion-drag pumping

« Induction; induction pumping

« Dissociation; conduction pumping

induction
pumping of
external
condensation i

external e e G
... . condensation |
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Illustration of EHD conduction
pumping
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Consider an electrolytic solution containing positive and
negative ionic species.
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lonic species will move along electric field lines
based on their charge.



Gas

o N e e e e S N\

e

_— . E - =

Dielectric Liquid L
| I I N I .

©0 CO 00 OO0 O

V- o0 0O OO V+

I 00 CO 0O —

©0 C0 00 OO OQ

bo 00 00 ¢0 06

Subjected to strong enough electric fields, the dissociation rate increases,
and regions of space charge will develop in the vicinity of the electrodes,
known as heterocharge layers.
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The motion of ions imparts shear forces on neutral molecules in the
liquid, and bulk motion is generated.
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Now consider asymmetric electrodes, resulting in an asymmetric electric

field.
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The asymmetric electric field results in a net Coulomb Force in
one direction, and vortices are formed near the electrodes.

Gas

Dielectric Liquid
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The generated flow field in a liquid film, from Yazdani and
Yagoobi, 2009.
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EHD Conduction Pumping of Liquid Film
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EHD Conduction Pumping - Theoretical
Model

- Initial work by Atten and Yagoobi for static
pressure generation via EHD conduction

mechanism

- In EHD conduction, charge carriers are not
produced by injection, but by dissociation of

molecules/impurities within fluid:
AB & ATB~
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Theoretical Model (cont.)

« Equations that govern charge density:

» Electric field vector:

OPeq
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Theoretical Model (cont.)

« Electric body force density:

f, = peE—%E2|7€+%V[E2(

« Continuity equation:

- Momentum equation:

de
ap

)Tp] (9)

(10)

p(u-V)u=-VP+uv?u+pg+p,E (11)
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EHD Advantages

- applicable from macro to micro scales
- simple design

« light weight

* non-mechanical, no rotating machinery
* rapid and easy control of performance
* low power consumption

* |low acoustic noise

« smart/active system

- effective flow distribution control
 intelligent mixing

« flexible
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EHD Constraints

high voltage/electric field
electric field interference

electrically conductive fluids

low pumping efficiency
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Examples EHD Conduction Pumps

Electrode Geometry
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A Two-Phase Heat Transport Device
Driven by EHD - Concept

Different from well-
known pool boiling

Liquid-vapor interface
is only a short
distance away from
heater (1-3 mm)

Complex liquid-vapor
phase change
bhenomenon in
presence and absence
of electrical field and
gravity
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Concept (cont.)

 Electrodes
lithographically printed
onto condenser surface

« Applied voltage to
electrode generates
intense electrical field

- Electrical body force
generates pumping
within dielectric liquid
film

- DEP electrode extracts
bubbles away from
heater surface

Adiabatic
Condenser section
section Boiler section
(heater), DEP
electrode

above heater

Liquid film pumped toward center heater
—y &=

—
_ 0505
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Concept (cont.)

* One of the few
techniques to pump
liquid film

- Design of electrodes
based on theoretical and
numerical understanding

thin liquid film condensate

vapor bubble extraction

L}

DEP electrode -

I EHD conduction electrode pair

e

condenser

heater
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Objectives

1. Provide fundamental understanding of the
electrically driven (based on EHD conduction
phenomenon) liquid film flow in the presence of
phase change (liquid to vapor), in the absence of
gravity

2. Provide phenomenological foundation for the
development of electric field based two-phase
thermal management systems leveraging EHD
engineering advantages to develop systems of
arbitrary mass  flow requirements  and
geometries.
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Experimental Work - Test Cell
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EHD Conduction Pump Design

Outer

(Condenser)

L, L, 508 pm
*IZ'* ';Lz (O — L, 1.52 mm
I I I L 508 pm
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Experimental Results

« Liquid film boiling results: Influence of applied EHD voltage
and liquid film thickness
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Effect of DEP Extraction Force on
Heater Surface Temperature

HCFC-123, 2.0 mm liquid film,
Heat flux, g”: 10.0 W/cm?

0 kV applied EHD potential
2.5 kV applied DEP potential
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Select Experimental Results

» HCFC 123
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4 ¢ 0 o @

Multi-Scale Heat Transfer Laboratory

Department of Mechanical Engineering \Worcester Po |yteC hnic Institute
/ Worcester Polytechnic Institute, Worcester, MA 3 O




DEP Effect Demonstration

Multiscale Heat Transfer Laboratory
Heat Flux: 10 W/cm#2

DEP Voltage: 0-2kV

Working Fluid: HFE-7100

Mar. 22, 2021

Diverging Electric Field
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» HFE 7100
» W EHD and DEP
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Effect of Non-Condensable Gas on Phase Change

Condensation is impeded in two
ways:

— Partial pressure of vapor is lowered, so
dew point of the vapor decreases.

— Higher gas concentration impedes

diffusion of vapor molecules to the liquid

surface.

Thermocapillary flows induced in
boiling, which inhibits bubble
detachment.

Increasing system pressure
decreases bubble size.

Interface
(pure component)

Coolant With non-condensables
side
Py
P
vb
T |

Pnb

AATLTTTTITTRNT TRANNNNNTNNNNNANNESY

— Interface
i (with non-condensables)

l-—TUbe—’L—’I“ Condensate film

wall

FIGURE 8. Boundary Layer Temperature and Pressure Distributions [6].

Jensen (1988)
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Experiment Chamber Design

Working Fluid: HFE-7100
2 mm Liquid Film (55 g)

Vapor Temperature Probe DEP Electrode 1 1 cm [ |
High Voltage Feedthrough

Pressure Transducer

Fill/'Vacuum Port

EHD Conduction Pump
High Voltage Feedthrough

wo T

1 cm x 1 cm Heater ,

EHD Conduction Pump J 0 DEP Electrode
Disc Heater element trace and platinum

Conduction Pump High Voltage Electrode vapor deposited PRTs for
DETAIL A temperature measurement.

Conduction Pump Ground Electrode

SCALE2:1
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Testbed
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Effect of P,,, — Without EHD and DEP
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Boiling Behavior, Saturated vs 50% P,;,

> wo EHD and DEP

Saturated HFE-7100
1.5 W/cm?2
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Effect of P,,, — With EHD & DEP
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Electric Current Behavior
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Non-condensable Gas - Summary

» The effect of non-condensable gas on the performance of electrically driven
liquid film flow boiling was measured.

« EHD and DEP were found to provide significant heat transfer enhancements
that were largely independent of air concentration.

» The effect of water vapor introduced into the system affected the measured
current of the EHD and DEP.

» Further numerical study of this multiphase system is warranted to
fundamentally understand the impact of EHD.

 This work will be published in ASME Journal of Heat and Mass Transfer.
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Technology Applications



Thermal Management of Electronics
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Thermal Management of Electronics
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Thermal demands of consumer CPUs, data from cpuworld.com. Frontier supercomputer, ORNL (Wikimedia Commons).
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Number of Orbital Launches
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Electronics in Space

174 Launches in 2022

1960 1970 1980 1990 2000 2010
Year

2020

Artemis Phase 1: Path to The Lunar Surface

st humans
foon in the 5 deliv
Gateway

'3

Laser Commuriications Terminal for Artemis Il
NASA GSFC, MIT Lincoln Lab, Lockheed Martin

Orbital Reef

https://www.nasa.gov/feature/goddard/2022/the-future-of-laser-communications Blue Origin & Sierra Space
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Heat Transport and Thermal Management in
Microgravity

Heat Pipes Passive Systems ]
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Heat Transport and Thermal Management

in Microgravity

ISS ACTIVE COOLING SYSTEMS

The International Space Station’s active thermal control systems (ATCS) pump fluids through
closed-loop pipes. A liquid-ammonia coolant loop along the station’s main truss keeps the station’s
electricity-generating solar panels cool.

s External ammonia coolant loops

m Moderate temperature water coolant loops
mmen  Low temperature water coolant loops

s Russian modules use triol fluid for internal cooling

s Russian modules use polymethyl siloxane for external cooling

American segment

Russian
segment

Photovoltaic radiator panels circulate ammonia
to maintain the temperature of the solar panels
generating electricity for the space station

Credit: Karl Tate, SPACE.com,
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Summary

« A fundamental study to understand the
interactions between electric field and flow field,
in the presence and absence of phase change,
with and without the gravity.

- An applied study to develop heat transport
devices for space and terrestrial applications.
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Thank you!

Contact: Jamal Yagoobi
jyagoobi@wpi.edu



