Electrically Driven Liquid Film Flow Boiling: A Two-Phase Heat Transport Device Driven by EHD Mechanisms

Jamal S. Yagoobi George F. Fuller Professor Mechanical and Materials Engineering Department Worcester Polytechnic Institute Worcester, Massachusetts, USA

August 2023

Multi-Scale Heat Transfer Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute, Worcester, MA

Worcester Polytechnic Institute

1

Acknowledgments

- NASA Headquarters, NASA Goddard Space Flight Center, and NASA Glenn Research Center
- National Science Foundation (NSF)
- PhD students and post-doctorates

Electrohydrodynamics

EHD: Interactions between electrical fields and flow fields

EHD Phenomenon

Note: Coulomb force pumps the fluid (i.e., EHD pumping) while the dielectro-phoretic (DEP) force separates the vapor phase from the liquid phase.

EHD Pumping

- Interaction of electric fields and free charges in a dielectric fluid
- Coulomb force main mechanism of this interaction
- Electric field and free charges required

Electric Charge Generation

- Direct injection; ion-drag pumping
- Induction; induction pumping
- Dissociation; conduction pumping

induction pumping of external condensation

external condensation

Multi-Scale Heat Transfer Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute, Worcester, MA

Worcester Polytechnic Institute

Illustration of EHD conduction pumping

Multi-Scale Heat Transfer Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute, Worcester, MA

Worcester Polytechnic Institute

7

Consider an electrolytic solution containing **positive** and **negative** ionic species.

Ionic species will move along **electric field** lines based on their charge.

Subjected to strong enough electric fields, the dissociation rate increases, and regions of space charge will develop in the vicinity of the electrodes, known as **heterocharge layers.**

The motion of ions imparts shear forces on **neutral molecules** in the liquid, and bulk motion is generated.

Now consider asymmetric electrodes, resulting in an asymmetric electric field.

The asymmetric electric field results in a net Coulomb Force in one direction, and **vortices** are formed near the electrodes.

Gas

Dielectric Liquid

The generated flow field in a liquid film, from Yazdani and Yagoobi, 2009.

EHD Conduction Pumping of Liquid Film

EHD Conduction Pumping – Theoretical Model

- Initial work by Atten and Yagoobi for static pressure generation via EHD conduction mechanism
- In EHD conduction, charge carriers are not produced by injection, but by dissociation of molecules/impurities within fluid:

 $AB \leftrightarrow A^+B^-$

Theoretical Model (cont.)

Equations that govern charge density:

$$\frac{\partial p_{eq}}{\partial t} + \nabla \cdot \boldsymbol{\Gamma}_{+} = k_D c - k_R p_{eq} n_{eq}$$
(3)

$$\frac{\partial n_{eq}}{\partial t} + \nabla \cdot \boldsymbol{\Gamma}_{-} = k_D c - k_R p_{eq} n_{eq}$$
(4)

$$\boldsymbol{\Gamma}_{+} = b_{+} p_{eq} \boldsymbol{E} + p_{eq} \boldsymbol{u} - D_{+} \nabla p_{eq}$$
(5)

$$\boldsymbol{\Gamma}_{-} = -b_{-}n_{eq}\boldsymbol{E} + n_{eq}\boldsymbol{u} - D_{-}\nabla n_{eq}$$
(6)

• Electric field vector:

$$\nabla \cdot \boldsymbol{E} = \frac{\rho_e}{\varepsilon} = \frac{p_{eq} - n_{eq}}{\varepsilon}$$
(7)
$$\boldsymbol{E} = -\nabla \phi$$
(8)

Theoretical Model (cont.)

• Electric body force density:

$$\boldsymbol{f}_{e} = \rho_{e}\boldsymbol{E} - \frac{1}{2}E^{2}\nabla\varepsilon + \frac{1}{2}\nabla\left[E^{2}\left(\frac{\partial\varepsilon}{\partial\rho}\right)_{T}\rho\right] \qquad (9)$$

Continuity equation:

$$\nabla \cdot \boldsymbol{u} = 0 \tag{10}$$

Momentum equation:

$$\rho(\boldsymbol{u}\cdot\boldsymbol{\nabla})\boldsymbol{u} = -\boldsymbol{\nabla}P + \mu\boldsymbol{\nabla}^{2}\boldsymbol{u} + \rho\boldsymbol{g} + \rho_{e}\boldsymbol{E} \qquad (11)$$

EHD Advantages

- applicable from macro to micro scales
- simple design
- light weight
- non-mechanical, no rotating machinery
- rapid and easy control of performance
- low power consumption
- low acoustic noise
- smart/active system
- effective flow distribution control
- intelligent mixing
- flexible

Worcester Polytechnic Institute

EHD Constraints

- high voltage/electric field
- electric field interference
- electrically conductive fluids
- low pumping efficiency

Examples EHD Conduction Pumps

21

Multi-Scale Heat Transfer Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute, Worcester, MA

Worcester Polytechnic Institute

A Two-Phase Heat Transport Device Driven by EHD - Concept

- Different from wellknown pool boiling
- Liquid-vapor interface is only a short distance away from heater (1-3 mm)
- Complex liquid-vapor phase change phenomenon in presence and absence of electrical field and gravity

Concept (cont.)

- Electrodes lithographically printed onto condenser surface
- Applied voltage to electrode generates intense electrical field
- Electrical body force generates pumping within dielectric liquid film
- DEP electrode extracts bubbles away from heater surface

Liquid film pumped toward center heater

Concept (cont.)

- One of the few techniques to pump liquid film
- Design of electrodes based on theoretical and numerical understanding

vapor bubble extraction

Objectives

- 1. Provide fundamental understanding of the electrically driven (based on EHD conduction phenomenon) liquid film flow in the presence of phase change (liquid to vapor), in the absence of gravity
- 2. Provide phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD engineering advantages to develop systems of arbitrary mass flow requirements and geometries.

Experimental Work – Test Cell

Multi-Scale Heat Transfer Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute, Worcester, MA

Worcester Polytechnic Institute

EHD Conduction Pump Design

Dimension	Outer (Condenser)
L ₁	508 µm
L ₂	1.52 mm
L ₃	508 µm
L ₄	2.54 mm
т	7

Multi-Scale Heat Transfer Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute, Worcester, MA

Worcester Polytechnic Institute

Experimental Results

Liquid film boiling results: Influence of applied EHD voltage • and liquid film thickness

28

Effect of DEP Extraction Force on Heater Surface Temperature

- HCFC-123, 2.0 mm liquid film, $P_{sat} = 78.2 \text{ kPa}$, $T_{sat} = 20.9^{\circ}\text{C}$
- Heat flux, q": 10.0 W/cm²
- 0 kV applied EHD potential
- 2.5 kV applied DEP potential

Select Experimental Results

Multi-Scale Heat Transfer Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute, Worcester, MA

Worcester Polytechnic Institute

30

Dielectrophoretic (DEP) Vapor Extraction

Diverging Electric Field $F_{DEP+} \neq F_{DEP-}$

DEP Effect Demonstration Multiscale Heat Transfer Laboratory Heat Flux: 10 W/cm^2 DEP Voltage: 0-2kV Working Fluid: HFE-7100 Mar. 22, 2021

Sustaining Boiling in Microgravity

- ➢ HFE 7100
- ➢ W EHD and DEP

Effect of Non-Condensable Gas on Phase Change

- Condensation is impeded in two ways:
 - Partial pressure of vapor is lowered, so dew point of the vapor decreases.
 - Higher gas concentration impedes diffusion of vapor molecules to the liquid surface.
- Thermocapillary flows induced in boiling, which inhibits bubble detachment.
- Increasing system pressure decreases bubble size.

Jensen (1988)

Experiment Chamber Design

Working Fluid: HFE-7100 2 mm Liquid Film (55 g)

Testbed

Effect of P_{Air} – Without EHD and DEP

Boiling Behavior, Saturated vs 50% P_{Air}

➢ wo EHD and DEP

Saturated HFE-7100 1.5 W/cm²

50% P_{Air} 2 W/cm²

Effect of P_{Air} – With EHD & DEP

Electric Current Behavior

Non-condensable Gas - Summary

- The effect of non-condensable gas on the performance of electrically driven liquid film flow boiling was measured.
- EHD and DEP were found to provide significant heat transfer enhancements that were largely independent of air concentration.
- The effect of water vapor introduced into the system affected the measured current of the EHD and DEP.
- Further numerical study of this multiphase system is warranted to fundamentally understand the impact of EHD.
- This work will be published in ASME Journal of Heat and Mass Transfer.

Technology Applications

Thermal Management of Electronics

Thermal Management of Electronics

Thermal demands of consumer CPUs, data from cpuworld.com.

Frontier supercomputer, ORNL (Wikimedia Commons).

Electronics in Space

Artemis mission plan By NASA - nasa.gov, public domain

Laser Communications Terminal for Artemis II NASA GSFC, MIT Lincoln Lab, Lockheed Martin https://www.nasa.gov/feature/goddard/2022/the-future-of-laser-communications

Orbital Reef Blue Origin & Sierra Space

Heat Transport and Thermal Management in Microgravity

Heat Transport and Thermal Management in Microgravity

Summary

- A fundamental study to understand the interactions between electric field and flow field, in the presence and absence of phase change, with and without the gravity.
- An applied study to develop heat transport devices for space and terrestrial applications.

Thank you!

Contact: Jamal Yagoobi jyagoobi@wpi.edu