

TFAWS

GSFC • 2023

Prediction of Cryogenic Propellant Tank Active Pressure Control by Jet Induced Mixing

Eymon Lan and Shanbin Shi Rensselaer Polytechnic Institute

> Presented By Eymon Lan

Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

- Background
- Research objective
- Technical approach
- Nodal modeling framework
- Tank pressure control experiment
- Nodal simulation
 - Numerical conditions
 - Required closures for nodal model
 - Numerical implementation
 - Results
- Conclusions

Background

- Refueling in LEO for deep space missions have several challenges
- Cryogenic propellant storage tank
 - Liquid hydrogen (LH2) and liquid oxygen (LOX)
- Cryogenic fluid management technologies
 - Mixing destratification
 - Filling and venting
 - Refrigeration
 - Pressurization
 - Liquid acquisition device (LAD)

Image: NASA

Background (Cont'd)

• "Heat is the enemy"

- Radiation heat penetrates through insulation layers
- Heat leaks through conduction from structural components such as struts (localized heating)
- Causes thermal stratification in microgravity
- Thermodynamic vent system (TVS) operates with jet mixing technology
 - Reduces thermal gradients within the fluid
 - Promotes condensation at the interface to reduce tank pressure

- Develop a comprehensive nodal model to predict active pressure control of cryogenic propellant tanks
- Simulate jet induced mixing and interfacial heat and mass transfer
 - Need accurate closure relations using system level analysis code
 - Jet is not self-similar near the nozzle (L/D < 25)
 - Confined flow due to both wall and bubble interface
- Demonstrate the capabilities of SINDA/FLUINT for fast simulation of jet induced mixing inside a cryogenic propellant tank

- Primarily leverage a nodal code, namely SINDA/FLUINT, to reduce computational cost
- Construct a nodal model representing ullage, jet flow, and bulk liquid regions in a cryogenic propellant tank
- Use CFD code simulations to obtain closures for internal flow parameters such as jet velocity, volumetric flow rate, and radius
- Implement various closures into the nodal model accounting for jet mixing and vapor condensation
- Validate predicted pressure evolution against Tank Pressure Control Experiment (TPCE) experimental results

Nodal Modeling Framework

- Jet induced mixing nodal model
 - Strategically discretized fluid domains
 - Ullage region
 - Jet region
 - Bulk liquid region
 - Requires correlations to resolve the internal flow
 - Volumetric flow rate of the jet flow
 - Radius of the jet flow
 - Requires correlation for mass and heat transfer at the interface
 - Liquid entrainment indirectly modeled
 - Mass flow rate increases downstream of jet due to entrainment
 - Satisfy conservation of mass within lumped nodes

Tank Pressure Control Experiment

Test conditions

- Working fluid: Freon 113
- Acceleration: 1e-6g
- System pressure \approx 41 kPa
- Temperature ≈ 296K (near saturation temperature)
- Jet flow rate: 0.38 to 3.36 liters/min
- Bond number : 0.034
- Jet Reynolds number: 1,800 to 16,100
- Jet Weber number: 0.29 to 22.29
- Heaters A & B (0.05 to 0.12 W/cm²)

M.D. Bentz, J. Meserole, and R. Knoll, Jet Mixing in Low Gravity - Results of the Tank Pressure Control Experiment, AIAA, Proc. of 28th Joint Propulsion Conference and Exhibit, Nashville, TN, USA, July 06-08, (1992).

• Experimental jet mixing case Run #6

M.M. Hasan, C.S. Lin, R.H. Knoll, and M.D. Bentz, "Tank Pressure Control Experiment: Thermal Phenomena in Microgravity," NASA Technical Paper 3564, National Aeronautics and Space Administration (1996).

- Case description: Tank depressurization due to jet induced mixing
 - Simulation time: 3 minutes (180 seconds)
 - Working fluid: Freon 113
 - Acceleration: 1e-6g
 - Fill level: 84%
 - $\text{Re} = 2,217 (u_i = 0.0933 \text{ m/s})$
- Initial conditions:
 - Tank pressure = 47.15 kPa
 - $T_{liq} = 296.7 K$
- Boundary conditions
 - Inlet: mass flow rate
 - Outlet: pressure outlet

Case Setup (Nodal)

• Inlet temperature

• Pressure outlet

• Interfacial mass transfer

$$\dot{m_v} = -\left(\frac{q_{il} + q_{iv}}{h_{fg}}\right) = -\left[\frac{U_l A \left(T_{sat} - T_l\right) + U_v A \left(T_{sat} - T_v\right)}{h_{fg}}\right]$$

• Liquid to interface heat transfer

$$\operatorname{Nu}_{c} = C \operatorname{Pr}^{m} \operatorname{Re}_{j,r}^{n}$$

Re_{*j,r*} =
$$\frac{\rho vr}{\mu}$$

0.88 < C < 1.09
 $m = 1 / 3, n = 1$

J.N.B. Livingood and P. Hrycak, "Impingement Heat Transfer From Turbulent Air Jets to Flat Plates – A Literature Survey," NASA TM X-2778, (1973).

• Vapor to interface heat transfer

/2

- Assumes solid conduction (Nusselt number roughly equals to 1)

K. Marzec and A. Kucaba-Pietal, "Heat Transfer Characteristics of an Impingement Cooling System with Different Nozzle Geometry," J. Physics.: Conf. Ser. 530, 012038, (2014).

- Momentum closures for internal flow obtained through CFD model
 - 2D volume of fluid (VOF) model
 - Circular turbulent jet

E. Lan and S. Shi, "RANS-Based CFD Simulation of Jet-Induced Mixing and Jet Impingement on Large Bubble in Microgravity, Nuclear Technology, (2023).

• Nondimensionalized jet velocity

- Jet radius and volumetric flow rate from CFD simulation
- Volumetric flow rate obtained numerically by integrating the velocity profile up to jet radius

• Tank pressure and temperature

- Nodal code takes approximately 5 seconds to run a 3 minutes jet mixing case
- CFD code takes approximately 2 days

- A nodal framework was developed based on SINDA/FLUINT to simulate jet induced mixing and interface heat and mass transfer
- Jet closure models were obtained through CFD simulations
- A transient jet induced mixing case was simulated referencing TPCE jet mixing case Run #6
 - Pressure profile agrees well with experimental data
 - Liquid temperature agrees reasonably well
- Demonstrated capabilities of SINDA/FLUINT for fast simulation of jet induced mixing inside a cryogenic propellant tank

- This work was supported by an Early Stage Innovations (ESI) grant from the NASA's Space Technology Research Grants Program (80NSSC20K0303).
- I would also like to thank the technical support provided by Michael F. Harris of NASA Kennedy Space Center, Mamoru Ishii of Purdue University and Wei Ji of Rensselaer Polytechnic Institute.

NASA

Thank You and Questions?