TFAWS Cryogenics Paper Session

Thermal Design, Analysis, and Testing of a Conductively-Cooled, High Temperature Superconducting Rotor for a 1.4 MW Electric Machine for Aeronautics Applications Erik J. Stalcup¹, Justin J. Scheidler¹, Thomas F. Tallerico¹, William Torres², Kirsten P. Duffy³, Tysen T. Mulder¹

> Presented By Erik Stalcup

> > Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center College Park, MD

1. NASA Glenn Research Center

HERNEY

&

ANALYSIS WORKSHOP

2. Wolf Creek Federal Services

3. University of Toledo

Motivation

- Aviation impacts:
 - Climate
 - CO₂ (dominant), contrails (~¹/₂ impact of CO₂), H₂O vapor, soot
 - Environment
 - Air quality NOx (dominant), sulfur
 - Noise
- Despite significant progress in efficiency, global CO₂ emissions from aviation growing at increasing rate
- 2 options:
 - Change fuel (e.g., jet A → SAF or H2)
 - Electrify
- NASA's High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA's STARC-ABL concept

NASA's High-Efficiency Megawatt Motor (HEMM) Value Parameter Rated continuous 1.42 MW **Copper stator** power Superconducting (> 100 °C) rotor coils & core Nominal speed 6,800 rpm (~ 60 K) Housing 107 m/s Tip speed Rated torque 2 kNm Electromagnetic 16 kW/kg specific power goal > 98% Efficiency goal Slip ring Rotating shaft with integrated cryocooler

HEMM Thermal Design

- The thermal design of the HEMM rotor is focused on conductively cooling the superconducting coils.
- Cooling is provided by the integrated pulse tube cryocooler.
- Two requirements:
 - The cryocooler is designed to lift 51 W of heat at a temperature of 50 K
 - The superconducting coils must operate at 62 K or lower
- Therefore, the rotor has been designed to minimize the heat load on the cryocooler and keep the coils at 62 K or lower with a cryocooler cold tip temperature of 50 K.

HEMM Thermal Design

- Shaft Conduction:
 - Heat enters the rotor from the shaft, which is coupled with the heat exchanger at the hot end of the cryocooler
 - Mitigated by thin titanium shaft and webbed structural connection
- Convective Heating and Windage Losses
 - Heat transfers from the warm stator to the rotor through the air and with frictional losses to the air during rotation.
 - Mitigated by operating in a < 10⁻³ torr vacuum enclosure
- Radiative Heating
 - Heat transfer from the warm stator to the rotor through radiation
 - Mitigated by
 - coating the inside of the vacuum enclosure in low-emissivity nonelectrically conductive paint (ϵ = 0.13)
 - polishing and coating all rotor components with physical vapor deposited gold ($\epsilon = 0.018$)
- Coil-to-Coil Current Leads and Coil
 Solder Joints
 - I²R heating will occur in the coil-tocoil leads and at solder joints.

current leads

NASI

Rotor Heat Sources:

- Current Lead Conduction and I²R Losses
 - Heat is conducted from feedthroughs at the hot end of the cryocooler
 - Heat is generated via I²R losses
 - This is mitigated by optimizing the length/diameter of the current lead to minimize the sum of both effects
 - The lead is coupled to the cold tip at the thermal sink in order to reject the heat away from the coils

NASA

Experimental Setup – Assembly

NASA

Experimental Setup - Instrumentation

- Vacuum feedthrough channels
 - 15 RTDs
 - 9 Type E thermocouples
 - 4 voltage probes
 - 2 heaters
 - 1 pair high current leads

NASA

- Steady state: >90% of temperature sensors changing at rate < 0.2 K/hr
- Most tests: cold tip held at 45 K rather than 50 K (HEMM's nominal)
- Allowable ΔT from cold tip to coils: 12 K

Test Point	Rotor Current (A)	Support Plate Heater Enabled?	HEMM's Cold Tip Temp. (K)	Coil Temp. (K)		ΔT , Cold Tip to Coils (K)	
				Average	Peak	Average	Peak
А	0	Yes	48.2	59.6	60.2	11.3	12.0
В	0	No	26.3	39.1	40.1	12.9	13.8
С	0	No	45.0	55.9	56.6	10.9	11.6
D	0	No	45.0	55.2	55.9	10.2	10.9
Е	47.5	No	45.0	55.8	56.7	10.8	11.7
F	0	Yes	45.0	56.6	57.3	11.6	12.3

After improvements (to cleanliness, clamping force, instrumentation)

Measured peak ΔT from cold tip to coils (10.9 to 12.3 K) is acceptable, but with no margin

Transient Response

Thermal Modeling and Correlation

- Thermal modeling done in COMSOL 5.6
 - Temperature dependent thermal conductivity for all materials
 - Curvilinear coordinates used for coil thermal conductivity
 - Radiation via ray tracing

Superconductor Thermal Conductivity

TFAWS 2023 – August 21-25, 2023

Thermal Modeling and Correlation

- Average rotor and coil temperatures are warmer in test. Potential causes:
 - Higher PVD gold emissivity
 - Higher heat leak from shaft
 - Lower conductance at thermal bridge interfaces
- Current leads are somewhat warmer in test. Potential causes:
 - · Poor current lead thermal sinking at cold tip and/or backiron interfaces
 - Higher I²R heating
- Hoop is much warmer in test:
 - Lower conductance to rotor

	Measured		
	Temp. (K)	Temp. (K)	Error (K)
Coils	55.9	48.6	-7.4
Backiron	54.9	48.1	-6.8
Current Leads	65.7	48.4	-17.3
Rotor Cold Tip	45.0	45.0	0.0
Ноор	81.9	48.8	-33.0

RMS Error = 11.4 K

NAS

NASA

- Model correlation is in progress. Largest impact changes include:
 - Addition of heat at DC terminals from conduction and I²R losses based on standalone model (~2 watts)
 - Reducing bridge to backiron contact conductance
 - Raising PVD gold emissivity
 - Lowering hoop to rotor contact conductance
- Several changes have the same ceffect of raising the average rotor temperature. It is difficult to determine which are the cause(s) of the higher temperatures.
 - Re-test with additional temperature sensors. Potentially fix debonded/anomalous sensors.
 - Post-test emissivity measurements

		Measured		
		Temp. (K)	Temp. (K)	Error (K)
9 0	Coils	55.9	55.4	-0.5
	Backiron	54.9	55.6	0.7
	Current Leads	65.7	72.1	6.4
	Rotor Cold Tip	45.0	45.4	0.4
	Ноор	81.9	67.4	-14.5

RMS Error = 4.5 K

- Stable operation of rotor at rated current and rated temperature demonstrated while conductively cooled with acceptable ΔT
- Model correlation reduced RMS error from 11.4 K to 4.5 K and identified opportunities to reduce △T
 - Improve current lead thermal sinking
 - Potentially improve thermal bridge contact conductance and/or PVD gold emissivity
- Forward work
 - Continuing model correlation with other test points
 - Post-test emissivity measurements
 - Integrating design changes and model refinements into future HEMM designs

- This work was funded by NASA's Advanced Air Transport Technology (AATT) Project
 - Electrified Aircraft Powertrain Technologies Subproject

Contact Info

Erik Stalcup Justin Scheidler Thomas Tallerico

erik.j.stalcup@nasa.gov justin.j.scheidler@nasa.gov thomas.tallerico@nasa.gov

william.torres@nasa.gov

Kirsten Duffy

kirsten.p.duffy@nasa.gov