

Thermal Challenges from GSFC Planetary Missions

Matt Garrison

Chief Engineer, GSFC Planetary Science Projects Division

Recovering Thermal Engineer

- Environmental Challenges from Recent GSFC Planetary Missions*
 - Venus
 - LLO
 - Lunar Surface
 - Interplanetary Space
 - Titan
- Technological Challenges from Recent GSFC Planetary Missions
 - Mass Spectrometers
 - Passive Cooling to Cryogenic Temperatures
- Future challenges from the Planetary Decadal Study

* Most of these missions are collaborations between GSFC and other organizations or NASA centers.

Mission: DAVINCI (2029 launch)

Thermal environment

- 80% albedo, solar intensity 2x that at Earth
- Surface temperature ~900F
- Surface pressure ~90atm supercritical CO2

Design approach

- Transient thermal design
 - Insulation
 - Thermal mass, phase change material
 - Try to survive as long as you can
- Anything attempting to reach the surface has to be built like a deep sea submersible (pressure is the equivalent of 1km below the surface the ocean)

Mission: LRO (launched 2009)

Thermal environment

- <10% albedo
- At the sub-solar point you get 1 sun coming from above and 0.9 suns of IR energy coming from below
- At 0 degree beta angle the nadir view ranges from -200C to +100C
 Lunar eclipses: periodically the solar input disappears for maybe an hour

Design approach

- Careful control of radiator views; as beta angles get lower the range of nadir IR sinks becomes untenable
- Often the easiest is to design a radiator that can look zenith directly into the sunlight (OSRs, AgTef, etc)
- Pre-heating hardware to survive lunar eclipses

Mission: VIPER (2024 launch), Blue Ghost (CLPS, 2024 launch)

Thermal environment

• Exactly the same as Low Lunar Orbit but since you're relatively stationary you get the steady-state environment

Design approach

- Same as Low Lunar Orbit with one major addition:
- Site selection, orientation, and local terrain drives the thermal environment

Mission: Lucy (launched 2021), OSIRIS-REx (launched 2016)

Thermal environment

• Variety of solar distances. Lucy goes from ~0.9AU to ~5.8AU (3% to 120% of solar intensity at Earth)

- Gravity assists may force the system to design for much closer solar distances than they would normally operate.
- Rarely have anything that looks like planetary IR or albedo to worry about

Design approach

• As you get farther away you need to shut down radiator area; things are getting colder as your power budget becomes tighter

Mission: MAVEN (launched 2013), CCRS (2027 launch)

Thermal environment

- Relatively benign; Mars orbit is similar to Earth orbit but with lower solar power
- Often dominated by cruise to Mars or any Earth flybys

Design approach

• Standard design approaches for Earth orbit.

Mission: Dragonfly (2029 launch)

Thermal environment

Operating in a dense environment that is ~ -180C
Convective coefficient is similar to sea level on Earth (lower gravity compensated by higher density)

Design approach

 Significant use of foam insulation to tightly manage heat leak to the cold environment

• Use forced convection for heat transfer within the vehicle (both for cooling and heating)

- In Situ chemistry instruments like mass spectrometers are critical instruments to understand the chemical composition of planetary atmospheres (current or planned missions to Venus, Mars, and Titan)
- In order to have a pristine sample the ingest lines and manifolds are often heated to >100C
- Noble gas measurements are key to understanding the origin of atmospheres. Enriching noble gases typically requires cooling down a gas trap to -50C then rapidly warming it up.

Passive Cooling to Cryo Temperatures

- Infrared spectroscopy is a key tool for understanding the material composition of surfaces (current and planned missions to the moon and asteroids)
- Typically IR detectors require cooling down to temperatures <100K but planetary missions don't typically have the power for active cooling focal planes
- This can drive the need for large radiators with shades to prevent illumination from the sun or planets.

NASA

Future Challenges from the Decadal

- Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (released 2022)
- Recommended flagship missions that would build upon thermal challenges in previous and ongoing missions

Decadal-recommended Flagships	Venus- like	LLO-like	Lunar Surface-like	Interplanetary- like	Titan-like	In Situ Chemistry	Passive Cryo
Uranus Orbiter and Probe	Х			Х	Х	Х	Х
Enceladus Orbilander				Х	Х	Х	
Europa Lander				Х	Х	Х	
Mercury Lander		Worse	Worse	Х			
Neptune-Triton Odyssey	Х			Х	Х	Х	Х
Venus Flagship	Х			Х		Х	

• Recommended New Frontiers missions to Kuiper Belt, Ceres, a comet, Enceladus, the Moon, Saturn, Titan, Triton, and Venus

- Thermal environments can present a defining thermal challenge for planetary science missions.
- Planetary science payloads often complicate thermal design because of their unique thermal control requirements
- Future planetary missions will require more complicated and creative thermal control systems

Acronym	Definition
CCRS	Capture, Containment, and Return System
CLPS	Commercial Lunar Payload Services
DAVINCI	Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging
IR	Infrared
LRO	Lunar Reconnaissance orbiter
MAVEN	Mars Atmosphere and Volatile Evolution
OSIRIS-REx	Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer
OSR	Optical Solar Reflector
VIPER	Volatiles Investigating Polar Exploration