# **TFAWS Interdisciplinary Paper Session**

&

ANALYSIS WORKSHOP

HERNEY



Fast GPU based ray tracing methods for radiation calculations: Applications to thermal analysis for space systems.

> Presented By Jean-Frédéric Ruel Maya HTT

> > Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center College Park, MD

Computing radiative heat transfer with view factors or ray tracings is the most time-consuming part

It can take **days** to get the results of a single simulation for high fidelity **detailed** models (~50k-100k elements)





NASA



- Capability added to Simcenter 3D Thermal Multiphysics and Space systems thermal since 2021
- view factor calculation is a perfect type of calculation to be performed on Graphics Processing Units or GPUs since these calculations can be performed in parallel on the hundreds of cores that a typical GPU processes.
- View factor computations and ray tracing is performed on NVIDIA GPUs, based on a modified Monte Carlo ray tracing method implemented using CUDA v11.8.
- Support for both diffuse and advanced thermo-optical surface properties including specular reflectivity, transmissivity, and refraction.





# Why CUDA?

- Actively supported and improved
- Ability to program at lower level
  - More easily tune solve process
  - Optimize based on application needs
- Rich supporting toolset
- Partnership with NVIDIA and ongoing collaboration



#### Maya HTT 4



- The Monte Carlo computation method is a ray-casting or ray-tracing method used in many applications including the calculation of view factors.
- Rays are launched in random directions from the jth element
- The fraction of rays that hits the kth element is used to compute the view factor from j to k
- Number of rays cast influences results accuracy and precision
- The GPU implementation is a modified implementation of the Monte Carlo method.



# **View Factor Computations on the GPU**

#### View Factor Computations Run Time



Time (sec)

#### Maya HTT 6

NAS



## **Benchmark Overview**

| NASA |
|------|
|      |
|      |

| Model  | Number of elements |  |  |
|--------|--------------------|--|--|
| Teapot | 168,929            |  |  |
|        |                    |  |  |

Ray tracing time (s)

| Customer models | Number of elements |  |  |
|-----------------|--------------------|--|--|
| Model 1         | 700,910            |  |  |
| Model 2         | 813,000            |  |  |
| Model 3         | 445,487            |  |  |
| Model 4         | 511,687            |  |  |



|         | View Factor Computation Time (S) |                     |             |  |
|---------|----------------------------------|---------------------|-------------|--|
|         | CPU view<br>factors              | GPU view<br>factors | Improvement |  |
| Model 1 | 8 cores: 68,050                  | 1,451               | <b>46</b> x |  |
| Model 2 | 6 cores: 44,436                  | 1,307               | 34x         |  |
| Model 3 | 6 cores:<br>118,406*             | 297                 | 399x        |  |
| Model 4 | 6 cores:<br>127,233*             | 311                 | 409x        |  |

# CPU Monte<br/>CarloGPU ray<br/>tracingImprovementTeapot3,68125215x

#### Maya HTT 7





# Solar Heating test: Detailed Moon Surface

- In order to fully test our new implementation for the GPU we used a detailed Moon Surface model.
- This model was created, based on NASA Lunar Handbook methodology:
  - The topography for the zone of interest is retrieved from the NASA database
  - A custom script converts the binary files to an NX-readable format
  - The thermal model is prepared using properties correlated from surface temperature measurements (from NASA's LRO mission)





## **Lunar Surface Model**

2km square at 5m, a 16km square at 20m, and the remainder of 88.5 deg S to Pole at 240m resolution

360 positions (1 lunar day cycle, every ~2 hours)



# Solar Flux Computations on the GPU





MAS



# **WORK IN PROGRESS**



NASA



# **Orbital Solar Flux on the GPU**

SJF-Assembly\_s2306\_Linear\_articulation : Articulation-Det-Spec-Lineal SJF-Assembly\_s2306\_Linear\_articulation : Articulation-GPU-Spec-Lineal Load Case 1, Increment 1, 0s

SJF-Assembly\_s2306\_Linear\_articulation : Articulation-MC-Spec-L Load Case 1, Increment 1, 0s

NASA



Maya HTT 13









# **Conclusion**



GPU Enclosure radiation and solar heating calculation will be an early access feature in Simcenter 3D 2312



- Next for Simcenter 2406 (June 2024):
  - Add Earth IR and Albedo calculations to the GPU orbital heating algorithm
  - Parabolic Elements
  - Optimize GPU algorithm further for Articulation/spinning models 15



## **Thank You!**

Jean-Frédéric Ruel

jean-frederic.ruel@mayahtt.com



For more information, visit <u>mayahtt.com</u>

