TFAWS Interdisciplinary Paper Session

TFAWS23-ID-7

Thermomechanical deformation analysis of a tubular solid oxide steam electrolysis cell

<u>Victoria Kurushina</u>, Vinooth Rajendran, Anil Prathuru, Mamdud Hossain, Nadimul Faisal School of Engineering, Robert Gordon University, Aberdeen, AB10 7GJ, UK

Ajith Soman, Bahman Amini Horri, Qiong Cai University of Surrey, University Campus, Guildford, GU2 7XH, UK

Engineering and Physical Sciences Research Council Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center College Park, MD

Contents

- Introduction to solid oxide steam electrolysis (SOE)
 - Solid oxide electrolysis explained
 - Water electrolysis technologies
 - SOE efficiency and advantages
 - SOE integration
 - SOE modelling
 - SOE cell designs
- Project overview
 - Objectives
 - Work packages
 - METASIS experimental tests
- Thermomechanical model
 - Tubular cell design and composition
 - Model set-up
- Results
 - Stress analysis for 800 °C
 - High temperature effects
 - Effect of boundary conditions
 - Effect of porosity
- Summary

Solid oxide steam electrolysis explained

Steam supply at high temperature into the gas channel and splitting into ions of oxygen and hydrogen at the cathode

$H_2O \rightarrow 2H^+ + O^{2-}$

Cations of hydrogen gain electrons at the cathode, powered by the external electrical circuit, and the formed molecules of hydrogen leave the gas channel at the outlet, mixed with the remainder steam

$2H^+ + 2e^- -> H_2$

Anions of oxygen pass through the electrolyte (membrane/solution), attracted by the anode, where they loose extra electrons and form zero-valence molecules that exit the gas channel

Uses of H₂?

- **Refining petroleum**
- **Treating metal**
- **Producing fertiliser**
- **Processing foods**
 - Energy storage and producing electricity for a wide variety of devices and vehicles
 - **Burning hydrogen** blended with natural gas
- Uses of O₂?
- Part of breathable air for life support

۲

- As oxidizer, for propulsion, welding, cutting
- For medical applications

Water electrolysis technologies

Dominant technologies:

- proton exchange membrane electrolysis cells (PEMEC);
- anion exchange membrane electrolysis cells (AEMEC);
- alkaline water
 electrolysis cells
 (AWEC);
- solid oxide steam electrolysis cells (SOSEC);
- thermochemical water splitting (TWS);
- photolysis water splitting (PWS);
- photoelectrochemical water electrolysis cells (PECWEC).

PEMEC – mature

SOSEC – demonstration

AWEC – commercial

Characteristics	Units	PEMEC	AEC	SOEC	
Operating temperature	٥C	50-80	60-80	650-1000	
Current density	A/cm ²	0.6-2.0	0.2-0.4	0.3-2.0	
Cell voltage	V	1.8-2.2	1.8-2.4	0.7-1.5	
Operating pressure	bar	< 200	< 30	< 25	
Production rate	m³/h	< 40	< 760	< 40	
Stack lifetime	hours	20 000 - 60 000	60 000 - 90 000	10 000	
Stack energy	kWh/m ³	4.2-5.5	4.2-5.9	>3.2	
Capital cost	euro/kW	1 860 - 2 320	1 000 - 1 200	> 2 000	

SOE efficiency and advantages

- Higher temperature leads to better performance due to reduction in anode and cathode activation overpotential.
- ✤ However, it creates thermal stress and less durable cells.

Current challenges

- 1. Costs should be reduced for all stages of the stack lifecycle.
- 2. Material degradation accelerated in high temperature conditions.
- 3. Fabrication of cells, production of complex materials may not be completely clean.
- 4. Lack of commercialization.
- 5. Lack of manufacturing innovations.

Advantages

- 1. High efficiency, achievable in high temperature conditions.
- 2. Combined input of thermal and electrical energy makes it compatible with wide range of systems with either type of excess energy.
- **3.** SOEC, SOFC and reversible cells are well suited for intermittent operation.
- 4. Use of solid materials for the functional layers simplifies transportation, installation and operation.
- 5. SOEC operation is environmentally friendly.

Introduction to SOE

SOE integration

- Heat
- Electricity
- Feedstock materials

Integration potential:

- Nuclear plants
- **Solar plants**
- Wind farms
- Hybrid energy systems
- Aviation
- Spacecraft systems, etc.

Introduction to SOE

Introduction to SOE

NASI

Project overview

Objectives

- Development of large-scale and hierarchical length scale cathode catalyst layer (tubular metasurface) using thermal spray coating technique (using air plasma spray) for an enhanced structurally stable SOSE cell design;
- Development of a customised SOSE cell design with a tubular electrode assembly for an integration with high temperature steam line (with higher thermo-mechanical and electrochemical performance and long-term structural stability).

Fig. 1 METASIS methodology.

TFAWS 2023 - August 21-25, 2023

Project overview

Work packages

• WP1 (Electrolyser design and optimisation)

- Task 1.1. Benchmarking of electrolyser
- Task 1.2. Structural analysis
- Task 1.3. Computational fluid dynamics

WP2 (Materials selection, manufacturing, and electrode cell development)

- Task 2.1 Materials selection and processing
- Task 2.2. Electrode materials comparison

WP3 (Scaled manufacturing of electrolyser cell with metasurface design)

- Task 3.1. Manufacturing of tubular electrode with metasurface cathode
- Task 3.2. Prototype testing and validation

Project overview

METASIS experimental tests

Our targets

- Improving efficiency
- Lower cost
- Durability
- Scalability & system integration

<u>Material characterization</u> tests to be performed in the Robert Gordon University

High temperature tests to be performed in the University of Surrey

Power supply

Layer Functionality Thickness (per design), mm	Thickness (per	Motorial	Proposed manufacturing	Porosity (per	
	Material	technique	design), %		
1	Substrate	2.150	Titanium alloy	Commercial	30
2	Interconnect	0.035	Silver	Electrodeposition	0
3	Cathode	0.070	Nickel oxide and GDC	Dip coating / Thermal spray	30
4	Electrolyte	0.022	GDC and YSZ	Dip coating	0
5	Anode	0.070	GDC and LSCF	Dip coating / Thermal spray	30
6	Interconnect	0.035	Silver	Wire wrapped around the cell	30

Tubular cell design and composition

Material	Density, kg/m ³	Melting temperature, °C	Young's modulus, GPa	Poisson ratio	Thermal expansion coefficient, µm/m·°C	Tensile yield strength, MPa	Ultimate yield strength, MPa
Titanium alloy	4405	1370	107	0.32	8.9	850	1098
Silver	10500	961	83	0.37	19	54	140
Nickel oxide	4670	1605	160	0.26	12.5	440	646
GDC	7200	2600	120	0.26	11.5	1.95	200
YSZ	5900	2700	210	0.28	10.5	750	1200
LSCF	6000	920	170	0.30	14.5	94	160

Property	Units	Cathode	Electrolyte	Anode
Density	kg/m³	5682	7082	6600
Melting point	°C	2003	2609	1760
Young's modulus	GPa	144	128	145
Poisson's ratio		0.26	0.26	0.28
Thermal expansion coefficient	µm/m·°C	12.1	11.4	13
Tensile yield strength	MPa	265	24.5	48
Ultimate yield strength	MPa	467	223	180

Thermomechanical model

Model set-up

- Standard solid elements for the substrate
- Shell elements for five functional layers
- Full tube of 100 mm length and 6 mm internal diameter
- Bonded contacts set between the layers
- The sixth layer is assumed to be a layer of a uniform material

#	Number of cells	Maximum total deformation of the outer silver interconnect, mm	Maximum total deformation of the titanium substrate, mm
1	22 537	0.10441	0.079562
2	37 862	0.11159	0.078981
3	50 962	0.11234	0.078593
4	76 192	0.11036	0.078641
5	90 762	0.088686	0.078468
6	118 342	0.094807	0.078269
7	129 009	0.087868	0.079190
8	141 911	0.089302	0.078229

Base case == worst case of the thermal expansion in the middle of the temperature range:

- Fixed-fixed connections
- No porosity
- 800 °C thermal load
- 1 MPa internal pressure

Stress analysis for 800 °C

Fixed-fixed boundary conditions

Layer 2

Layer 6

Layer 5

TFAWS 2023 - August 21-25, 2023

Stress analysis for 800 °C

View from the Y axis

Fixed-fixed boundary conditions

TFAWS 2023 - August 21-25, 2023

Ansys

Stress analysis for 800 °C

 Normal stresses observed with fixed-fixed boundaries
 – enlarged for comparison

Orientation cross-section cuts

Effect of boundary conditions

0°

A-2

10.000 (mm)

Effect of boundary conditions

- **Total deformation at fixed-free** \geq conditions
- Temperature 800 °C \triangleright

NASA

High temperature effects

- View from X axis
- Temperature 1000 °C
- Fixed-fixed boundary conditions

1 FAVIO 2020 - AUGUSI 21-20, 2020

High temperature effects

Deformation of the outer layer

Effect of porosity

- Total deformation with the designed 30 % porosity in layers 1, 3, 5, 6
- ➢ Temperature 800 ℃

Effect of porosity

- Total deformation with the 40 % porosity in layers 1, 3, 5, 6
- ➢ Temperature 800 ℃

Summary

Conclusions:

- Identified areas of potential crack occurrence and delamination.
- □ Important impact of the difference in the CTE among the layers.
- □ Total deformation increases about 1.4 times with the temperature growth from 600 to 800 °C for the non-porous structure.
- Increase in porosity from 30% to 40% may lead to approximately 10% reduction in the total deformation.

Next steps:

- □ Electrochemistry and fluid dynamics analysis, accounting for the thermomechanical deformation.
- Benchmarking with the high temperature SOEC tests in the laboratory.

TFAWS23-ID-7

Thank you

Please, feel free to get in touch:

Professor Nadimul Faisal (RGU)

n.h.faisal@rgu.ac.uk

Dr Victoria Kurushina (RGU)

v.kurushina@rgu.ac.uk, v.kurushina@outlook.com

