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Variable Heat Rejection Surfaces

• Alter view factors, adjust heat conduction path near 

surface, change emissive properties of surface

• Provide adaptable heat rejection and temperature 

regulation for spacecraft thermal engineers

• Examples

– Macro-louvers

– Micro-electro-mechanical systems (MEMS)

– Electrostatic switched radiators (ESRs)

– Electrochromic devices (ECDs)

– Thermochromic Variable Emissivity Materials (VEMs)
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Thermochromic Variable Emissivity Materials (VEMs)

• Thermochromic variable emissivity materials (Lawdensky)

– Temperature dependent, passive, variable emissivity modulation

– Commonly Vanadium dioxide (VO2) thin film; with a solid-solid 

phase transition at 67C (340K). Transition is customizable 

(Barako).

– Provides passive regulation of variable thermal loads

– Provides reduced size and weight (<1 kg/m2 areal density)

– No moving parts; low complexity

– Provides reliable, passive, and adaptable heat rejection and 

temperature regulation for spacecraft thermal engineers

• In the (near?) future, thermochromic VEMs will become 

more mainstream

– To promote adoption, need to accurately model them using 

traditional tools (e.g., Thermal Desktop®)
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Thermochromic Variable Emissivity Materials (VEMs)
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𝐴 = area
𝜎 = Stefan − Boltzmann constant
𝜀𝑙𝑜𝑤,ℎ𝑖𝑔ℎ = emissivity

𝑇 = temperature



Method 0: Test Problem

• Used to compare modeling methods

• Spacecraft thermal model

– Single-node sphere (100 J/K and radius of 0.132 m)

– Non-uniform heat load. 75W for first 600 seconds; 

5W thereafter.

– Solar reflecting surface with (α=0.2;ε=0.8)

– Solar absorptivity assumed constant in this 

work!

• Environment

– 500 km, β = 0°, circular orbit (5,677s period) with 

0K heat sink

– Direct solar flux, albedo fraction, and Earth IR 

values were 1,414 W/m2, 0.3, and 239.7 W/m2

– 14 orbital positions
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Method 1: Radiation Conductor

• Approach

– Uses a node-to-surface conductor

– Temperature-dependent optical property

– Create emissivity-independent Heating Rate 

Radiation Tasks

• Restrictions

– If radiation is to a sink only (e.g., deep space) 

and no other surfaces

– There are no emissivity-dependent 

environmental heating sources (e.g., Earth 

IR). Not true for our test problem! Method 

1b uses Dynamic SINDA to account for this.

• This is likely the least computationally 

expensive method but can only be used 

in select circumstances
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Earth IR overestimated;

ε = 0.47 at beginning.

Earth IR corrected;

ε varies.
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• Based on VEM temperatures

• This is the most versatile method and can be applied to 

nearly all situations but can be computationally expensive

• Includes 2 methods: With (Method 2b) and without 

(Method 2a) Orbital Slicing

Method 2: Dynamic SINDA

• Approach

– Leverages Dynamic SINDA (a 

connection 

between SINDA and Thermal 

Desktop)

– Temperature-dependent optical 

property

– Periodically pause current SINDA 

solution, update radiation jobs (e.g., 

Radk and Heating Rates), then 

resume
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Sample Thermal Desktop inputs
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Method 2: Dynamic SINDA (Orbital Slicing)

• Dynamic SINDA

– Computationally expensive. When radiation jobs are updated 

ALL orbital positions (i.e., 14 in our example) are recalculated)

– Only local orbital positions are needed (i.e., 2 instead of 14)

– More complex code
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Method 2: Dynamic SINDA

• Dynamic SINDA

– Requires additional 

variables/initialization and 

code in Output Calls

– Details in paper
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Method 3: Radiation Database

• Approach

– Create pre-run Radks and Heating Rates across 

multiple temperature bands that capture the VEM 

properties

– For each band: Create constant optical 

properties; Create Radiation Analysis groups; 

Create unique Case Sets

– Control temperature bands with logic and insert 

files

• Do all the computationally expensive ray 

tracing ahead of time

• Not as versatile as Dynamic SINDA method 

(e.g., difficult to handle multiple VEM 

surfaces facing each other). However, less 

computationally expensive.
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Method 3: Radiation Database

• Radiation Database

– Requires additional variables/initialization and code in 

OPERATIONS block and User Logic

– Details in paper
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Radiation Database pseudocode
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Method Comparison

• Recall

– Method 0: Nominal (constant ε)

– Method 1b: Radiation conductor (with Dynamic SINDA)

– Method 2a: Dynamic SINDA (without orbital slicing)

– Method 2b: Dynamic SINDA (with orbital slicing)

– Method 3: Radiation Database

• All methods above were compared

– Method 1b used as control; good agreement with one another; 

+/-1.5°C

– Some differences. Likely a result of temperature band resolution 

and differences in orbital positions
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Conclusions and Future Work

• Thermochromic VEMs could provide 

temperature dependent, passive, and 

reliable heat modulation for future 

spacecraft

• Three novel modeling methods were 

developed for transient simulations in 

Thermal Desktop

– Methods agreed within +/-1.5°C

– No single ‘best’ method’; depends on 

application

• Future work

– Improvements to algorithms

– Extend to steady-state

– Evaluate against more complex problems
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