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ESA’s Rosetta macro
louvers

Alter view factors, adjust heat conduction path near
surface, change emissive properties of surface

Provide adaptable heat rejection and temperature
regulation for spacecraft thermal engineers

Examples

— Macro-louvers

— Micro-electro-mechanical systems (MEMS)

— Electrostatic switched radiators (ESRS)

— Electrochromic devices (ECDs)

— Thermochromic Variable Emissivity Materials (VEMS)

| & &
h. X ‘lh'"
) 1,

Electrochromic in bleached/colored
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Thermochromic variable emissivity materials (Lawdensky) Flexible < 0.3 kg/m?

— Temperature dependent, passive, variable emissivity modulation y—

— Commonly Vanadium dioxide (VOZ2) thin film; with a solid-solid n
phase transition at 67C (340K). Transition is customizable Bend radius < 10 cm
(Barako). Example VEM (Lawdensky)

— Provides passive regulation of variable thermal loads L0 e

— Provides reduced size and weight (<1 kg/m2 areal density) o

— No moving parts; low complexity o7 : /

— Provides reliable, passive, and adaptable heat rejection and 206 [
temperature regulation for spacecraft thermal engineers E -

In the (near?) future, thermochromic VEMSs will become To3f /
more mainstream .

— To promote adoption, need to accurately model them using 0-020'0' Ty ———————— '3'40

traditional tools (e.g., Thermal Desktop®) Temperature [K]

Nominal emissivity vs.
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Direct Earth Earth
Solar IR
Internal Heat Reduced
A = area heater
o = Stefan — Boltzmann constant requirements

Elow,high = €mMissivity
T = temperature
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Method 0: Test Problem

- Temperature ZNggT T o
« Used to compare modeling methods spike dueto 2 —~ hestona ] 120
« Spacecraft thermal model 75W heat load 200 ] Lo
— Single-node sphere (100 J/K and radius of 0.132 m) fzao F— {80 %
— Non-uniform heat load. 75W for first 600 seconds; Low%'%o,\' I\ ] 22 g
5W thereatfter. temperaturegzso '\I\\\. P : 50 =
— Solar reflecting surface with (a=0.2;£=0.8) due to high € oo F i N // 12
— Solar absorptivity assumed constant in this surface in 220 | / ] 20
210 i - 10
work! eclipse SO i ot oo i shrririra warir
. 1200 2400 3600 4800
* Environment s timesed N
. . . . (3,785 seconds)9 _,.=, ! 7 (3,312 seconds
— 500 km, B = 0° , circular orbit (5,677s period) with s seconcs \.\‘6
OK heat Slnk H . sha“é;:n-/.‘ Eclipse
— Direct solar flux, albedo fraction, and Earth IR~ wssonse Shadon Q' 152 secons

values were 1,414 W/m?, 0.3, and 239.7 W/m?2 spherical 1 h

Spacecraft
— 14 orbital positions PN
— 2 (946 seconds)

Position 0/14 1

Subsolar
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Heat Sink

1% Method 1: Radiation Conductor

Approach
— Uses a node-to-surface conductor
— Temperature-dependent optical property

— Create emissivity-independent Heating Rate

Radiation Tasks Earth IR overestimated:;

« Restrictions € = 0.47 at beginning.

— If radiation is to a sink only (e.g., deep space)
and no other surfaces

— There are no emissivity-dependent
environmental heating sources (e.g., Earth
IR). Not true for our test problem! Method
1b uses Dynamic SINDA to account for this.
« This is likely the least computationally
expensive method but can only be usedEarth IR corrected;
in select circumstances € vares.

TFAWS 2023 — August 21-25, 2023
©2023 Redwire. DISTRIBUTION A: Approved for public release: distribution is unlimited. Public Affail

Method_la: Radiation Conductor without Dynamic SINDA
30 130

= Method_la Temperature
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Method_1b: Radiation Conductor with Dynamic SINDA
330 (TTTTTTITITITITTTT | L TTT 11 1
i —— Method_1b Temperature ||
320 = = Heatload - 120
310 110
300 1 100
v 290 \ 90
= 280 80
() . —]
2 270 : \\ ir-_- 70
@© - -
o 260 [ \ / 60
D_ - -
£ 250 : \x\\‘h__J 50
GJ - -
= 240 — 40
230 : 30
220 : 20
210 10
200 IIIIIIIIIIIIIIIIIIIIIII [} 0
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Method 2: Dynamic SINDA

« Approach [ oaieaten )
— Leverages Dynamic SINDA (a —{Newadatonjon,__

connection
between SINDA and Thermal RN cuiate O

Desktop) TNEW-T:L’
— Temperature-dependent optical ‘ Orbital

[ SINDA engine slicing
Output update

property Timestep
— Periodically pause current SINDA

solution, update radiation jobs (e.g.,
Radk and Heating Rates), then
resume

« Based on VEM temperatures

* This Is the most versatile method and can be applied to
nearly all situations but can be computationally expensive

* Includes 2 methods: With (Method 2b) and without
(MethOd 2a) Orbltal SIICIng TFAWS 2023 — August 21-25, 2023
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Edit Optical Property - Var_e

Use Properies: Basic Props for Radks and Heat Rate Calculations

Basic  \Wavelength Dependent

Tabular Input

Sample Thermal Desktop inputs

Enter Temperature [K] Emissivi ity

0000 02

270000 02
250000 08
1000000 08

080+

et Color...

[[]ve. Angle []e. Temperature
[]vs. Angle
[]vs. Angle
["]ve. Angle
Edit Tabla.. 2. Angle [#]s. Temperature
Cancel Help

Temperature [K]. Emissivity

075+
0.70£

065+

0605
2055
S

W g.45--
0.40+

035-F
030+

025-F
020

| | |
200 400 600 800
Temperature [K]

[] Dynamic Plotin

1000



* Dynamic SINDA

— Computationally expensive. When radiation jobs are updated
ALL orbital positions (i.e., 14 in our example) are recalculated)

— Only local orbital positions are needed (i.e., 2 instead of 14)
— More complex code

8
7 (3,312 seconds)

(3,785 seconds)9 __,.x .
(3,911 seconds) 10 :*’a \ .

Shadow Eclipse
Crossing L. .

(4,731 seconds) 12 Shadow - . 5 (1,892 seconds)
Crossing : : 4 (1,766 seconds)

Spherical —’
Spacecraft .

Current

13 Slice
/. 2 (946 seconds)
Position 0/14 1 95 tr. 0
Subsolar E'VE
0/5,677 seconds
Point (of ) tp,Op
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Method 2: Dynamic SINDA (Orbital Slicing
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Method_2a: Dynamic SINDA without orbital slicing

rrruri rrriri rrrri ! rrrri ! TTT11]
Y = Method_2a Temperature :
= = Heatload -

Method_2b: Dynamic SINDA with orbital slicing
rrriri rrrria T 1Trryrrrrryrri T
Method_2b Temperature ||
L — = Heatload -

- o o o e e e e e —
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Method 2: Dynamic SINDA

e — IF (TIMEN = t;) THEN 3 If current time at end of the current slice, update to new slice

8; =46,
. ]Ili2 (Shcfdow = 1) THEN $ If in entry/exit shadow crossing, update slice end angle
) D n am IC S I N DA 7 8. =085 +2xt, x360/hrPeriod 3 Update ending angle
y AC C O u n t fo r ty = hrPeriod X 85 /360 $ Update ending time
. L. Shadow =0 _ ) $ Next slice Wi_ll notheina s_hadow cru.:)ss%ng )
Req u I reS ad d Itl O n al S h ad OW C ro S S | n g S EL%ZE]: ETIMEN = hrPeriod) THEN $ If end of orbit, reset new slice to beginning of orbit
. . ., . . . 6 =05 + 0
variables/initialization and t, = hrPeriod x 6,/360 -
ELSE % Update to nominal new slice

code in Output Calls T e penind x 0,360

IF (t; = hrTimeShadowEntry — t.) and (TIMEN < hrTimeShadewEntry — t,) THEN
D etal IS I n p ap e r $ Check if new slice lands within upcoming shadow crossing; update if true
ty = hrTimeShadowEntry — t,
8 = 360 % t. /hrPeriod
Shadow =1
ELSEIF (t; > hrTimeShadowExit — t;) and (TIMEN < hrTimeShadowExit — t,) THEN
tg = hrTimeShadowExit — &,

Account for end of TN 0 = 360 x te/hrPeriod

ELSEIF (t; > hrPeriod) THEN

O r b I t ty = hrPeriod
8 = 360 x t; /hrPeriod
ENDIF

Dynamic SINDA pseudocode ENDIF

(Temperature evaluation) CALL TDSETREG(8y and 01y
CALL TDUPDATE $ Update all entities that use symbols that have changed
Tuew = VEM temperatures $ Compare current VEM temperatures against temperatures the last time a radiation CALL TDCASE $ Alternatively CALL TDCASE2
job was run. Torp = VEM temperatures $ Radiation job just ran; reset Torp
ENDIF

IF (|Txew — Towp| = Tie:) THEN § Compare current VEM temperatures against temperatures the last time a IF (TIMEN = hrPeriod) THEN $ If end of orbit, update to nominal output increment
radiation job was run. Re-run radiation jobs only if temperatures have changed by greater than a given, user-defined, OUT = OUT,,,,
tolerance. ELSEIF (TIMEN + OUT,,,,,) > tz) THEN $ Check for non-nominal output increment

CALL DUMPT( dynamicTemps.dat” .0) OUT = t, — TIMEN

CALL TDUPDATE % Cause Thermal Desktop to update all entities that use symbols that have changed. ELSE

CALL TDCASE OUT = OUTom

Top = VEM t ‘atures § Radiation job just ran; reset T, ENDIE - . s
END‘;}D emperatures auon job just ran. 1es€t LoLp Tyew = VEM temperatures $ Compare temperatures against last time a radiation job was run

— IF (|Txew — Town| = Tior) THEN $ If temperature change greater than tolerance, re-run radiation jobs

CALL DUMPT(*dynamicTemps. dat’ 0}
CALL TDUPDATE $ Cause Thermal Desktop to update all entities that use symbols that have changed.
TFAWS 2023 — August 21- CALL TDCASE
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' Method 3: Radiation Database

* Approach Example Case Sets 330 qrrrrrrrrmeromme ey 130
] Casa Sats 320 F— Method_3 Temperature | | 120
— Create pre-run Radks and Heating Rates across imﬁ-mi_z_n_wnn 310 F il 1 110
. Method_3_270_274K - -
multiple temperature bands that capture the VEM & wetoo 3 274 27ax 300 | NoiGe 1 00
properties - preipy iyl Tl s it B
B Method 3 285_290K 0 280 [— 1 80 §
— For each band: Create constant optical R | anoa3-#40 14k 2270 f— (\ /) 170§
. — : ] B © 260 I 60 o
properties; Create Radiation Analysis groups; S 50 [ 150 =
Create unique Case Sets ® 240 | {40
. . . 230 ' 30
— Control temperature bands with logic and insert 20 |1 1 -0
files 20 f+—— —— 10
. . 200 L1l 1 1.1 Ll L 1.l L1l L 1.1 L L 1.l Ll L LI 0
« Do all the computationally expensive ray 1200 2400 3000 4800
traCIng ahead Of tlme Example :J;T:_u_z?af" Dsz:;rﬁbsnmmw inF_lzigmssml ngau
* Not as versatile as Dynamic SINDA method Optical om0 om os
R . Properties vereeoe zeec 0.200 0620 0.323
(e.g., difficult to handle multiple VEM P o220 00 o o
surfaces facing each other). However, less S T e s | :
) : Mathod 3276 212K FADK 278 262Kk Example
Computatlonally expensive. EEE‘E%%EEEEEE%%&% Insert Eiles
TFAWS 2023 — August 21-25Menod-3-0.270 027 | v
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Radiation Database

) QA Method 3: Radiation Database

ANALYSIS WORKSHOP

— Requires additional variables/initialization and code in

OPERATIONS block and User Logic
— Detalls in paper

Emissivity versus Temperature

©c o o =
N o ©o o

-]

) -~ 0.6
Illustration of

temperature bands

Emissivity
©c o o ©
N oW AW,

o ©
o K

200 220 240 260

280

Temperature [K]
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Radiation Database pseudocode
(OPERATIONS block)

F
F

ATEST =MAINT1
BTEST = TIMEN
TIMEND = HRPERIOD
CTEST = TIMEND

DO WHILE (BTEST.LT.CTEST)
IF (ATEST .LE. 270.) THEN

BUILD BANDED, MAIN, HEAT, RADK 0 270K, HR 0 270K, SPACE

F

TEMP_ HIGH = 270.
TEMP _LOW =10.

ELSEIF ((ATEST .GT. 270.).AND.(ATEST .LE. 274.)) THEN

BUILD BANDED, MAIN, HEAT, RADK_270_274K, HR_270_274K, SPACE

F

TEMP_HIGH=274.
TEMP_LOW =270.

ELSEIF (ATEST .GT. 290.) THEN

BUILD BANDED, MAIN, HEAT, TDPROPS, RADK 290 1000K, HR._2%0 1000K, SPACE

F

i

TEMP_HIGH = 1000.
TEMP_LOW =290,
ENDIF

CALL TRANSIENT
CALL TDHTOT § Qutput Heater Summary

ATEST =MAIN.T1
BTEST = TIMEN
TIMEND = HRPERIOD
CTEST = TIMEND
END DO

Radiation Database pseudocode
(User Logic)

FTEST = MAIN.T1

IF ((FTEST .LT. TEMP_LOW).OR.(FTEST .GT. TEMP_HIGH)) THEN
TIMEND = TIMEN

ENDIF

11
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ALL CASES

) 330 prrrrTTTTTTTTTCOITr Ty 130
Method Comparison 320 [ e e[ 120
310 | Method_2a Temperature =+ 110
300 | ethod_a Tamperatre. [ 100
 Recall o 290 |— — - Heation
v 280 == — 180
— Method 0: Nominal (constant €) 2 270 j‘“:\\ : 170
— Method 1b: Radiation conductor (with Dynamic SINDA) Z‘i?ﬁ - I \ -- ——— :E
— Method 2a: Dynamic SINDA (without orbital slicing) ® ;:3 C i \\ - // 140
30
— Method 2b: Dynamic SINDA (with orbital slicing) 220 F : \ l/ 120
— Method 3: Radiation Database ;;g TR e whe i i e ;O
1200 2400 3600 4800
« All methods above were compared time [sec]
— Method 1b used as control; good agreement with one another; ’ T e T e
15" C = e
— Some differences. Likely a result of temperature band resolution ¢ , A\
and differences in orbital positions g F DN
3 0 :'_"Tm:?‘f!;?j"" i -ﬁ
:
)
e )

1200 2400 3600 4800
TFAWS 2023 — August 21-25, 2023 time [sec] 12
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“2% Conclusions and Future Work

« Thermochromic VEMs could provide — No single "best’ method’; depends on
temperature dependent, passive, and application
reliable heat modulation for future * Future work
spacecraft — Improvements to algorithms
« Three novel modeling methods were — Extend to steady-state
developed for transient simulations in — Evaluate against more complex problems

Thermal Desktop
— Methods agreed within +/-1.5° C
| Method | Descripion | Applicaton | Computational Cost _

Traditional Fixed emissivity problems only (10 sI;aocV:)nds)
Radiation Conductor Single VEM surface without spacecraft IR (emissivity-dependent) environmental heating _—
(without Dynamic SINDA) (10 seconds)

Radiation Conductor

Extremely High
(with Dynamic SINDA every 2 seconds)

Single VEM surface with spacecraft IR (emissivity-dependent) environmental heating (2,196 seconds)

Dynamic SINDA i . . High
(using T, but not orbital slicing) Any number of VEM surfaces; any heating environment (162 seconds)
Dynamic SINDA Medium-High

Any number of VEM surfaces; any heating environment

(using T;,; and orbital slicing) (146 seconds)

Medium-Low
(20 seconds)

TFAWS 2023 — August 21-25, 2023 13
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