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Background

• The Kilopower Reactor Using Stirling TechnologY (KRUSTY) Test1

– First fission reactor test for space application in over 50 years

– Collaboration between NASA and the U.S. Department of Energy (DOE)

– Built and tested at the Nevada National Security Site (NNSS) in 2018

– Highly Enriched Uranium (HEU) provided thermal power to Stirling engines

– An array of 2 Stirling engines and 6 thermal simulators

– Heat Pipes were used to couple the reactor to the Stirling engines
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20180007389.pdf (nasa.gov)

https://ntrs.nasa.gov/api/citations/20180007389/downloads/20180007389.pdf


Background

• KRUSTY Heat Pipes1

– Bolted/clamped to the “hot end” of the Stirling engine

– ∆T is 160 ˚C between core and Stirling engine hot end

– Significant portion, 120 ˚C , is between the heat pipe itself and the hot end

– Clamp design carries notable thermal losses that need to be addressed
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Delta T noted between Engine Hot End 

and adiabatic section of Heat Pipe

Clamp Design 20180007389.pdf (nasa.gov)

https://ntrs.nasa.gov/api/citations/20180007389/downloads/20180007389.pdf


Consolidated Heat Pipe (CHP) Design

• CHP improves the thermal interface between heat pipe & Stirling engine hot 

end 

– Stirling Heater Head, “hot end”, is buried within the heat pipe’s condenser

– Working fluid can condense directly on the hot end

– Directly delivers thermal power to Stirling engine

– An annular pipe inside is used as wick to enable lower gravity operations

– Designed to operate at 700 ˚C  and 800 ˚C Sodium as working fluid
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Test Setup
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Test Setup

• Stirling Engine Control

– Hot end temperature -> Tube Furnace

– Cold end temperature -> PolyScience chiller

– Stirling engine piston amplitude -> Sunpower Controller

• Charge Pressure

– Stirling engines are not hermetically sealed and so require 

helium top-offs

– Top-offs completed via Fill-Purge cart located behind the 

center rack.

• Mounting

– Koawool insulation used for heat pipe exposed to ambient 

air

– Single engine vertical orientation

– Protective cage
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Test Matrix
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Hot End Temperature 600 °C - 800 °C

Piston Amplitude 3 mm to 5 mm

Cold End Temperature 60 °C

Stirling Engine Pressure 500 psig (Helium working fluid)

• Three Main Test Sections

– Hot end temp -> 700 ˚C , Cold end temp -> 60 ˚C , piston amplitude varied from 3-5 mm

– Hot end temp -> 800 ˚C , Cold end temp -> 60 ˚C , piston amplitude varied from 3-5 mm

– Piston amplitude -> 5 mm, Cold end temp -> 60 ˚C , Hot end temp decreased from 600 – 

800 ˚C (25 ˚C increments)



Results

• Test Section 1: 700 ˚C Hot End Temperature, Varied Piston Amplitude

– ∆T between heat pipe adiabatic and condenser has been lowered to 2 ˚C at 5 mm!!

– Heat pipe is able to deliver thermal power to Stirling hot end directly

– Evaporator to Condenser ∆T  (light blue curve): ranges from 27-58 ˚C 

• The “knee” between 4.5- 5mm: no known root cause for this change in behavior

• Another similar test point indicates there would be no “knee” (Table to the right)

• Further testing needed: different heating ramp rates, vacuum environment, better insulation, etc.
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1st Test Point 2nd Test Point

Hot End Temperature 700 °C 700 °C 

Piston Amplitude 5 mm 5 mm

Cold End Temperature 60 °C 60 °C

Stirling Engine 

Pressure
500 psig 493 psig

Stirling Power Output 89 W 90 W

Adiabatic to Condenser 2 °C 6 °C

Evaporator to 

Condenser
58 °C 40 °C



Results

• Test Section 2: 800 ˚C Hot End Temperature, Varied Piston Amplitude

– ∆T between heat pipe adiabatic and condenser has been lowered to 4 ˚C at 5 mm!!

– Adiabatic to Condenser ∆T -> negative between 3 mm to 3.5 mm

• Caused by chiller failure that led to an abrupt shutdown

• Heat pipe working fluid froze at the condenser

• Had to manually heat the condenser to bring the fluid back down to the evaporator

– Overall Evaporator to Condenser ∆T is stable, ranges from 22-34 ˚C 
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Results

• Test Section 3: 5 mm Piston Amplitude, Varied Hot End Temperature

– Hot End decreased from 800 ˚C to 600 ˚C in 25 ˚C increments

– Adiabatic to Condenser ∆T ranges 6-48 ˚C 

– Overall Evaporator to Condenser ∆T ranges 34-82 ˚C 
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Conclusions/Forward Work

• Consolidated Heat Pipe design is successful!

– Compared to KRUSTY’s 120 ˚C ∆T, CHP shows 2-4 ˚C ∆T between the Stirling Engine 

Hot End and Heat Pipe

• Forward Work

– The CHP will be tested in a vacuum environment for further investigation

• Overall Evaporator to Condenser ∆T anomaly in the 700 ˚C test needs to be investigated 

further

• Overall Evaporator to Condenser ∆T might also be further reduced for all test conditions with a 

better environment (vacuum) and insulation
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Questions?
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Thank you!!
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