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Additive Vehicle-Embedded Cooling Technologies

• AdVECT

– Novel, high temperature heat pipes

– Leverage AM

• Consolidate parts

• Complex internal structures

– Decrease system mass

– Increase working fluid compatibility
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Additive Vehicle-Embedded Cooling Technologies
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Additive Vehicle-Embedded Cooling Technologies

• 500-600 K operating regime

– Operating temp above conventional Ti/Al & water/ammonia systems

• Low mass (< 2 kg/m2)

– Additively manufactured (AM) ceramics reduce part density

• Potential Working Fluids

– Halides

• Iodine

• Aluminum chloride

• Aluminum bromide

• Iron (III) chloride

– Eutectics

• Dowtherm A

• TRL 3 development goal
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Additively Manufactured Ceramics

• Three primary fabrication methods

– Binder Jetting

• Low resolution (50-200 μm layers,  

• Requires large ceramic particles (generally ≥ 50 μm), 

porous

– Direct Ink Writing

• Low resolution (minimum feature size tip dependent, 

generally > 100 μm, > 50 μm layer height)

• Can use small or large ceramic particles

– Digital Light Processing (DLP)/Stereolithography

• High resolution (≤ 50 μm minimum feature size, ≤ 50 

μm layer height)

• Small ceramic particles (< 1 μm)
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Digital Light Processing

• Admatec Admaflex 130 DLP 

Printer

– Exposes photosensitive resin 

with ceramic particles in 

suspension

• 405 nm wavelength

– 50 μm resolution, 20 μm layer 

height

– 54 x 96 x 100 mm build volume

– > 99% final part density
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Wick Design

• AM enables arbitrary 

complexity

– Stochastic

– Functional lattice (triply 

periodic minimal surfaces)

– Strut-based

– Combination of the above
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Aluminum Nitride (AlN) Ceramics

• High Thermal Conductivity

– > 120 W/m‧K

• Moderate to High Flexural Strength

– > 500 MPa

• Low Bulk Density

– 3.26 g/cm3

• Outstanding Thermal Shock Resistance

– >900°C

• High Melting Point

– ~2200°C

• Excellent Chemical Resistance

– Wide range of potential working fluids
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AM AlN Development
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AlN Slurry Development

• 60%/vol Admatec Development Resin C

– Water-soluble acrylate resin with BAPO photoinitiator

• 40%/vol ceramic solids

– 98%/wt Höganäs Grade C AlN powder

• Specific Surface Area : 1.8 – 3.8 m2/g

• Particle Size: 0.8 - 2.0 micron

– 1%/wt Y2O3 nanopowder

• Particle Size: 10 nm

– 1%/wt CaZrO3 nanopowder

• Particle Size: 40 nm

– Ceramics mixed with 1%/wt with Hypermer KD1 Dispersant
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AlN Grade C

Image: Höganäs GmbH 



Silicon Nitride Slurry Development

• High refractive index materials challenging to print

𝑫𝒄𝒖𝒓𝒆 ≈
𝐶
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𝑛0
∆𝑛

2

∙ 𝑙𝑛
𝐼

𝐼0

– dpart encompasses MFP of light

– Resin refractive index (n0) = 1.46

• nAl2O3 = 1.786 – n0 = Δn = 0.326

• nAlN = 2.110 – n0 = Δn = 0.650

• ~ 4 times higher intensity for AlN at same Dcure the same depth of cure
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𝐶 = constant (e.g. light wavelength)
𝐷𝑐𝑢𝑟𝑒 = depth of cure
𝑑𝑝𝑎𝑟𝑡 = particle diameter
𝐼 = light intensity
𝐼0 = light intensity to cure resin
𝑛0 = resin refractive index
Δ𝑛 = difference between refractive index of 
𝑛0 and ceramic
𝜙 = volumetric particle loading



Slurry Characterization

• Rheometry testing confirms 

adherence to printer 

specifications

– Shear thinning

• Doctor blade, peristaltic pump

• Increasing volumetric solid 

loading (Φ) → shear 

thickening, decreased Dcure

• Decreasing Φ → low final part 

density, increased Dcure
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Thermogravimetric Analysis

• TGA run in N2 and air

• Informs debinding curve

• Notable mass gain in air nearing 

700C

– Oxynitride formation from 550-900C

– Oxidation > 900C 

• Initial processing in air, switch to N2

atmosphere for future work
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Printing Results

• Initial prints show good 

interlayer adhesion

– Some overdevelopment, 

loss of fine features 

compared to CAD model 

in Fig. A

– Fig. C shows as-

exposed layer
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Printing Results

• Initial prints show good 

interlayer adhesion

– Some overdevelopment, loss of 

fine features

• Tailored print settings 

decrease overall light dose

– ~586 mJ/cm2 → 414 mJ/cm2

• 36 μm Dcure → 34 μm Dcure

• Ideal: 40 μm Dcure

– Fine features preserved

17TFAWS 2023 – August 21-25, 2023

Small features well defined

Wick structure not overexposed

Clean layer lines



Sintering Results

• ASTM C1161 flexural bending 

beams sintered after air debind

– 45 x 4 x 3 mm

• Two part sintering at 1600°C (3 

hrs) and 1400°C (2 hrs) in N2 

atmosphere

• Good part density but lower 

shrinkage than conventional

– ~12% observed, 30% typical

• Oxide formation

– YAG, YAM, and YAP phases, ambient 

oxidation from processing
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Surface Characterization

• Surface roughness of as-printed 
alumina ceramics measured via 
optical profilometry

– Not AlN, but considered representative

• AlN emissivity ~0.87 in literature

– Testing forthcoming on properly sintered 
samples

• High roughness along layer lines (from 
radiation perspective)

– Sq ≈ 2.07 μm > 0.780-1.400 μm (λIR)

• Emissivity characterization planned for 
as-printed 
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Surface Characterization

• Surface roughness of as-printed 

ceramics measured via optical 

profilometry (alumina test print)

• High roughness along layer lines 

(from radiation perspective)

– Sq ≈ 2.07 μm > 0.780-1.400 μm (λIR)

• Emissivity characterization planned 

for as-printed 
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Future Work

• Working fluid compatibility testing

– AlBr3, AlCl3, FeCl3, I2, Dowtherm A

• Wick rate of rise testing

• Improved debind & sintering programs

• Scale heat pipe testing in atmosphere & vacuum
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Conclusions

• Demonstration of AlN printing

• TGA performed, curves in air and N2 developed

• Initial sintering conducted

– Requires increased N2 flow & pressure

• High resolution parts demonstrate fine feature

• Material compatibility testing currently ongoing
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