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$90M annual revenue small business (~300 employees) with >50 year track record of
developing and transitioning aerospace technologies
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Satellites in LEO experience temperature swings between -65° C and 125" C every
ninety minutes

— Rapid changes in temperature coming into and out of eclipse

The temperature variations can be even larger in other orbits or on the lunar surface
— Approximately +120° Cto -180° C temperature swings for both GEO and lunar surface vehicles
— -240° C in permanently shadowed regions of the moon

Thermal management systems on spacecraft have two key functions:
— Moving heat around the spacecraft, and
— Moving heat off of it

Heat pipes redistribute heat on spacecraft large enough to warrant them
— Bulky, heavy, and can require multiple working fluids to handle large temperature variations
— Mechanical components = source of failure

Emissive (radiative) surfaces remove heat from the spacecraft
— Ideal surfaces should sufficiently rejection of solar radiation, e.g. solar a < 0.2
— Ideal surfaces should also radiate variable thermal loads (AQ,,4 > 500 W/m?)



ldeal Variable Radiators
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 Numerous analyses have shown the advantage of variable emissivity surfaces for space
craft radiators
— For the analysis in Haddad et al, a fixed high emissivity radiator must generate ~ 60 W/m? of heat
to maintain a temperature above -10°C
* In eclipse, this heat must come from internal heaters

— A variable emissivity radiator with 80 . AQpassive = 30ﬂ2 -
minimum emissivity of 0.2 only requires 5 ;g < ——
2 i i =
15 W/m?< of heat to maintain a o 50— {RD e ———
temperature above -10°C = gg T /7 | = e
o ] N —
— Both radiator panels will sit at 50°C under & 20 1 It i e
£ | _—Tdealfuneable |
140 W/m? heat load = 18: ?é’"“ e""%s'“‘y_ il
§ g -_,. ,‘// AQyariable = 130% = I
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. f tl . If ft, E ‘_, / P -o-High Emissivity (0.9)
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thermal control system by maintaining its Pl 4 7 A P ~ldeal Tumsable Riissivity (02090 |
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over a wider range of thermal loads 0™ 20 40 60 80 100 120 140 160

Heat Load (W/m#2)
Haddad et al, Frontiers in Materials, 2022
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Passive and Active Technologies

VG-2023-249

Many passive and active solutions are in the toolkit of the spacecraft thermal
engineer to reject, emit, store, and move variable heat loads

Table 7-2: Passive Thermal Technology

Table 7-3: Active Thermal Systems
Manufacturer Products TRI.‘ in LEO
Environment
Minco Products, Inc., Birk Manufacturing, All Flex
Flexible Circuits, LLC., Fralock, Tayco Engineering, Electrical Heaters 7-9
Inc., Omega
Ricor-USA, Inc., Creare, Sunpower Inc., Northrop
Grumman, NASA Jet Propulsion Lab, and Lockheed Cryocoolers 5-6
Martin Space Systems Company
. Thermoelectric
Marlow, TE Technology Inc., Laird Coolers (TEC) 7-9
Lockheed Martin Fluid Loops 4-5
Active Thermal
NASA Small Spacecraft Technology program Architecture (ATA) 4-6

Manufacturer Product TR.L in LEO
Environments
AZ Technology, MAP, Astral
Technology Unlimited, Inc., Paint and 7.9
Dunmore Aerospace, AkzoNobel Aerospace Coatings, Coatings
Parker-Lord, Medtherm
Sheldahl, Dunmore, Aerospace Fabrication & Materials, 3M Tapes 7-9
Sheldahl, Dunmore, .
Aerospace Fabrication & Materials MLI Materials 79
NASA GSFC, Aerothreads, Aerospace Fabrication & MLI Blanket
. L 7-9
Materials Fabrication
Space Dynamics Laboratory, Thermal Management Thermal
Technologies, Aavid, Technology Applications, Inc., Straps 7-9
Thermotive Technology p
Bergquist, Parker Chomerics, Thermal
o Interface
Aerospace Fabrication & Materials and 7.9
Materials, AIM Products LLC, Intermark USA, Indium .
Corporation, Dow Coming, NeoGraf, Laird Technologies Conductive
' 9. ! g Gaskets
Sierra Lobo, Aerospa_ce Fabrication and Sun Shields 4-7
Materials
NASA Goddard Space Flight Center (GSFC) [hermal 7.9
ouvers
Aerospace Fabrication and Deplovable
Materials, Thermal Management Rap diaylors 5-6
Technologies
Aavid Thermacore, Inc., Adv_anced Cooling Technology, Heat Pipes 7.9
Inc., Redwire Space
Phase
Thermal Management Technologies, Active Space I\a?a rl:ﬁg;/ 7.9
Technologies, Advanced Cooling Technology, Inc. Thermal
Storage Units
Starsys, Redwire Space Th_ermal 7-9
switches
Multifunctional
Thermal Management Technologies Thermal 4-5
Structures

Not mentioned: thermochromics, which have limited space heritage

N A
Source: nasa.gov
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Thermochromics in Space
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- Emissivity is the opposite of absorptivity, and relates 1010 Bl e

to the ability of an object to radiate energy via j The sun’s spectrum peaks S
R 8 between 0.3 and 2 pm - 10
photon emission 10° 4 ook (VIS/NIR) .
« Absorption/emission of radiation is determined by | A room 10
the Planck and Stefan-Boltzmann laws, which state: temperature object

L . . .o peaks betweenS || 4
— Radiation spectrum is determined solely by object’s and 22 pm 10
temperature (LWIR/VLWIR)

— Total power output: §~ T*

* Intense solar radiation that heats up spacecraft
peaks in UV / Vis / NIR, while room temperature
spectrum peaks in MWIR / LWIR

« Thermochromic materials change their optical

Spectral radiant emittance, W/(m? um)
Spectral radiance, W/(m? um sr)

properties as a function of temperature Wavelength, um
— No external power required || Constant solar rejection... /
« To achieve optimal thermochromic performance: § =  with variable

1.  Minimize absorption of intense solar radiation &2 Hot IR emissivity
=

2.  Maximize possible IR emissivity variation S 5
< Cold

0.1 1 10 100

Wavelength (pm)



 Technology: Low-alpha, variable emissivity radiator (LAVER)
tiles applied to radiator panels for passive thermal regulation of
spacecraft

°* Manages radiation with three key features:

1. Passive emissivity switching — Phase change VO, passively
modulates emissivity with contrast of >3.25:1 and peak >0.8

2. Controllable set-point temperature — Insulator to metal transition
customizable between 15°C and 67°C while maintaining emissivity
contrast

3. Innovative coating design — Anti-reflection coating with high
transparency from ~ 0.4 to 22 microns improves Ag while rejecting
>80% of incident solar photon radiation (a < 0.2)

« Benefits over current state-of-the-art:
— Passive regulation of variable thermal loads (>500 W/m?)
— Reduced size and weight (<1 kg/m? areal density)

— No moving parts
— Low complexity of thermal control systems vs. heat pipes

Device Structure

and Performance
Solar Thermal
VIS/NIR (LWIR/NLWIR)

cold

AR coating

VO, reflection cavity

2” wafer devices

Front Side Back Side

hot
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Feature 1. Passive Emissivity Switching
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 LAVER passively ‘turns on / off’ at an engineered set-point temperature
— Based on phase transition temperature of vanadium dioxide (VO,) layer

* VO, undergoes a semiconductor-to-metal phase transition at a critical temperature

(Te)
— Phase transition is crystallographic with optical / electronic implications

» Semiconducting phase of VO, has bandgap of 0.65 eV (A > 2 pm)

— Loss component (k) of refractive index is significantly different than metallic phase in the
thermal IR (5-30 um)

Tc > 67°C: High Emissivity (‘on’) - o Tc < 67°C: Low Emissivity (‘off”)
, =

Metallic phase k

n | - 4' Semiconducting phase |

CR LR .‘..‘ H‘
{ B ]

T =100°C

02 08 1 2 5 10 20 30 02 05 1 2 5 10 20 30
Wavelength (um) High Temperature Low Temperature Wavelength (um)

Tetragonal Rutile Phase Monoclinic Phase




LAVER exhibits variable broadband emissivity according to
the thermochromic modulation of VO,

Emissivity Contrast

— Emissivity contrast from 0.26 (cold) to 0.86 (hot):

* TDR ~ 3.25 in current devices
 Fundamental limitis >10:1

— High uniformity across 50 mm (2”) substrates
« Working on scaling to 200 mm substrates

— Low hysteresis (~4° C)

— No changes in properties after 10s of thermal cycles

TDR and €,,,, tradeoff
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Feature 2: Innovative Coating Design

« The LAVER integrates a coating technology that rejects solar radiation (0.3-2 um) while
acting as an antireflection (AR) coating in the thermal band (5-22 ym)

— Enables rejection of solar radiation regardless of device temperature, while enhancing emissivity
contrast in the thermal band

— Integrated device performance agnostic to angle of incidence

Solar Thermal
VIS/NIR (LWIR/VLWIR) High & Constant Solar ...with Variable IR
‘ Rejection... Emissivity

-

1000

« Low a properties are integrated into
the top coat
« Working toward o =0.14.
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Feature 2: Controllable Set Point Temperature
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. Set point temperature of LAVER tiles can be modified without sacrificing emissivity contrast
— PSI achieves this via tight process controls and a unique doping method

LAVER Devices with Varying Set-points

1000
. T, =60°C
"E 800- \
Peak Minimum = - _
_ 2 =0.8
T-err% (((:errlgtiile) Normal Normal % Tc = 43°C nax
P Emissivity | Emissivity u_:_ 600-
60°C 0.86 0.26 + Tc =19°C
()}
43°C 0.82 0.21 0.61 3.9 L 400+
3 g .. |=0.2
19°C 0.78 0.2 0.58 3.9 © R G AR ' S I [
. T 00t A A |
TDR = Turn Down Ratio X e T

950 275 300 335 380 375 400
Temperature (K)

* Phase change VO, passively modulates emissivity with contrast of >3.25:1 and peak >0.8
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LAVER tiles subjected to numerous space
environmental tests for an initial evaluation of
overall “space-worthiness” and an estimate of
degradation through end-of-life, including
combined effects

— Tests performed by third-party aerospace contractor

LAVER tiles survived space environmental
testing and handling and testing for space
gualification

Near-term goal to flight test LAVER technology

Surface Resistivity
Outgassing
Adhesion
Humidity

Solvent

Contamination + UV

Electron Radiation

Proton Radiation

Thermal Cycling

limit 100 GQ/o
ASTM E595-15
MIL-F-48616

MIL-F-48616
3.4.1.1/3.4.1.4

MIL-F-48616
3.4.1.1/3.4.1.4

NA

2x1016 e’/cm? at
100 keV
(1 year in LEO)

(1x10* p*/cm? at
1.8 MeV)

(+90C to -90C,10x)

VG-2023-249

PASS
PASS
PASS
PASS

PASS

PASS
PASS

PASS

PASS
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 LAVER technology currently at TRL 6 and
MRL 4

— Based on technology performance,
manufacturing status, and device reproducibility

 PSI has fabricated and delivered batches
of LAVER devices to customers in limited
guantities (<25)

e Currently funded through NASA CCRPP
program to enhance TRL 6 - 7 and
MRL 4 = 5 by 2024
— Cost reduction via scaled fabrication
— Device uniformity and reproducibility

13



Continued Development: Extending LAVER Capabilities

* Flexible substrates: Rigid < 0.7 kg/m?2
— Conformal tiling over non-planar surfaces & increased retro-

fitting
— Lightweight for more robust application space

VG-2023-2 .
« Maximal performance:
— Reduce absorption in layered structure contributing to

higher ¢, in LWIR, with small reduction in ¢,

— Net effect: Emissivity contrast (TDR) approaches Flexible ~ 0.2 kg/m?2 '

theoretical limit (~10:1)

Current Anticipated
Performance Performance
€:.20 > .83 €:.10 > .82 Bend radius < 10 cm
TDR ~4:1 TDR ~ 8:1

a =04 a = 014

14



Technology Summary
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 PSI has developed a versatile technology for passive regulation of spacecraft
In orbit, on the lunar surface, and beyond.

« With emissivity contrast ~ 4:1, peak emissivity of 0.8 and a critical
temperature that can be set below 20° C, Low-alpha, variable emissivity
radiator (LAVER) tiles are well suited for a variety of applications, including
Lunar vehicles, ThinSats, and CubeSats

VIPER Rover

15
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« PSI has received funding by numerous agencies
to develop VO, variable emissive technologies.

Funding Sources

« Acknowledgement to Prof. Mikhail Kats at the
University of Wisconsin — Madison, for high
fidelity optical characterization

Questions?

Hessel Wright Andrade
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ADDITIONAL CONTENT
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Dissipation of Heat in Space

VG-2023-2 .
Without an atmosphere (or a ground to stand on!), the only way to dissipate heat in space is via
thermal radiation

Any satellite must contend with the following thermal inputs
— Waste heat generated by spacecraft payload functions (Qe)
— Heat absorbed from direct solar blackbody radiation (Qg,4,)
— Heat absorbed from solar radiation reflected from a nearby celestial body (Q_peqo)
— Infrared emission from a nearby celestial body (Qpanetshine)

The equilibrium temperature is set when the dissipated heat (Q,, ,4) IS €qual to the absorbed heat

- Qin = Qgen + Qsolar + Qalbedo + Qplanetshine

— 4
- Qout,rad =eaT

Q,,. = Heat generated by spacecraft
Q0" Solar heating

Quiess= S0kar heating reflected by planet
Quunnine= Infrared heating from planet
Q... ..+~ Heat emitted via radiation
Q.,....= Heat stored by the spacecraft

For many satellites, equilibrium is constantly changing

- When in eclipse (Qsolar' Qplanetshine)
— Non-continuous payload operation (Qgen)

Source: nasa.gov

18



AR SWaP and Thermal Requirements for Satellites NF \
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« With a constantly changing thermal environment, maintaining a spacecraft within
Its operating temperature range becomes a significant challenge

« For SmallSats (CubeSats, ThinSats, etc.), SWaP matters

Table 7-1: SmallSat Thermal Control Challenges Component/ Operating Survival
m Temperatur Temperatur
SmallSat Property Challenge Syste emperature (C) | Temperature (C)
Digital electronics 0to 50 -20to 70
Low thermal mass The spacecraft is more reactive to changing thermal environments. .
Analog electronics 0 to 40 -20 to 70
Limited external There is less real estate to be allocated to solar cells, designated -
. . . . . Batteries 10 to 20 0to 35
surface area radiator area, and/or viewports required for science instruments.
. ) . ) IR detectors -269 to -173 -269 to 35
There is less space for electronic components, science instruments,
Limited volume and thermal control hardware. Components can be more thermally Solid-state particle -35t00 -35t0 35
coupled detectors
pled.
. : } Momentum wheels 0to 50 -20to 70
Limited power There is less power available for powered thermal control technology.
Solar panels -100 to 125 -100 to 125

Source: nasa.gov

Given thermal control
constraints, maintaining systems
within specified temperature
range is a challenge!

19



LAVER vs. VO2-based State-of-the-Art
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Total, hemispherical thermal emissivity

Thermochromic materials change their optical properties

as function of temperature 09
. . 0.8

— No external power is required 507
Thermochromic activity in the LWIR can enable variable |
emissivity and passive space radiator technologies £ oal

S o3}
Integrating thermochromics into a patterned or layered 02|

0.1

structure can further enhance the emissivity variation

T T T T T I
@ Thermochromic | Negative-differential %\'b“\’*-
~| @ Electrochromic thermal emission -
O MEMS VO2 5o
| OChromic e
Olnsulator Kapton .Q
- | OMetal V4
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& N3
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¢ V02 SR (2
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Published state of the art:
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Hot state emissivity, €, Source: Barako, et al., 2022

Total, hemispherical thermal emissivity
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The LAVER technology harnesses thermochromic VO2 © 03 1 /‘,@;’Jﬁz : DR ="
I ' : . 0.2 s S
In passive radiator tiles e T c
I I <, "“\;-::- a i
— Achieves TDR up to 10:1 from 2-25 microns e e e E

Hot state emissivity, g,
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* (Micro)louvers:
— Advantages:
* Low cost, high redundancy
— Disadvantages:
* Moving parts (risk of failure)
« Heavy (areal density of 4-10 kg/m?)
* Limited emissivity contrast ) . : 2
« Electrochromics o o SR e 9
- Advantag es. Evans, A, “Design and Testing of the CubeSat Form Factor Thermal
. Lightweight (~ 1 kg /m2) Control Louvers,” AIAA/USU Conf. on Small Sats, 2019

« Good emissivity contrast (~0.15 - 0.7)

« Low power consumption (40 uW/cm?transient)
— Disadvantages:

» Poorly scalable

* Thermochromics

— Advantages:
* No power consumption
» Good emissivity contrast (~0.2 — 0.8)
— Disadvantages: :
* Limited space heritage Dark State (+0.2 V) Light State (-1.0 V)

VG-2023-249

Paris, A., and Anderson, K., “Electrochromic Radiators for
Microspacecraft Thermal Control,” NASA, 2005,

21
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« Degradation of the phase contrast as a function of doping or defect density is
a consistent feature of published deposition or synthesis approaches

— Epitaxial growth on TiO2 Defect engineering Doping with
atomic species -
10 ¢ ' 1.0 A S B T VS _2' e Neidoped limit effect on 7,
3 T,y (bulk): Ar” fluence (10™ cm™) | ~ 0T%F N\ 0\ dopant (at. %) (°C/at. %)
MI : e ——— \
’E 100 I - 08 e 0.0 | \ o\ \‘ ‘ b) Eudt V7 4 65
5 ®03 \azsE \ ) ||
E 8 - 0 8 | \\3{:\:\ - \,\ \ly [ Mg2+ 18—20 7 _3
S 10° § 06} ' I P T Coowe 25 23
z £ 1 e F 2 2.1 -20
Z 107 = N\ | Mo®* 22 2.5 “12
£ 3 0.4 T
= L © | \ _ 23
e 107 E = ‘ p3- = 1 -13
: - .\ i\
: X * . k , 0.2 _ \ \ B = Fe3t24 1.4 _6
107, e ‘ — N\ \ | 1,3 25 - _
200 250 300 350 T . ™= T R R )by s TOF M \ \f_‘_‘ \.\ \ Sb 7 1
20 0 20 40 60 80 100 | o Sie o T Za 11 unchanged
Temperature (K) J -
Muraoka, et al 2002 temperature (°C) . Wang, et al 2016
Rensberg, et al 2015 .,m;m‘_w e . =
Burkhardt, et al 1999

« PSI’s synthesis approach for LAVER is able to reduce the phase transition
temperature of VO, via doping without other kinds of material degradation
that suppress the phase contrast. 2



Feature 2: Controllable Set Point Temperature via Sol-gel Synthesis
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* VO, films can be made using
— Sputtering, Pulsed Laser Deposition, atomic layer deposition, epitaxial growth, and
solution (sol-gel) based techniques have all been used to make VO, films

« Many of these approaches are not conducive to high volume production, or
have significant costs associated with the deposition method.

* PSI has focused our development on the — .

sol-gel method =
. Film 3 120 + 12 Sapphire Magnetron sputterin
— V,0; sol gel film annealed and reduced to VO, Fim IEE St maveoide [T Solgel
« Advantages of sol-gel processing: e L O | v S
_ Scalable ST
: o A
_ InexpenSIVe ) ] § & /\1;‘ o (RCRTIREATERC R TN e
— High quality VO, thin film T Kod
- . b
— Versatility for aqueous doping Li8lT = 100°C
— Yields same optical properties as G g—
. S K  w=Z. 1 . R BNy — T §
sputtered films 5 e D e <E DR

02 05 1 2 5 10 2030 — R
Wavelength (um) Wan, et al., Annalen der Physik 2019
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