

34th Thermal & Fluids Analysis Workshop (TFAWS)

August 21-25 2023

Herbert Wertheim College of Engineering Department of Chemical Engineering UNIVERSITY of FLORIDA

A Novel Way to Enhancing Heat Transfer for Thermal Management Via Electrostatic Resonance

<u>T.Corbin</u>, <u>H.Black</u>, J.Livesay, W.O'Brien and R.Narayanan University of Florida, Department of Chemical Engineering, Gainesville FL USA

Motivation

Long term space exploration creates a need for effective thermal management systems

Challenges:

- Absence of gravity induced convection
- Extreme temperatures
- Limited resources

2

Background

Active thermal management

- Regulate temperature with active control system and mechanical components
- Advantage: Allows more effective temperature control, adaptability, higher heat load and performance optimization
- Drawbacks: Complexity and cost from mechanical parts, power consumption and mechanical failures
- Examples: Heaters, fluid loops, thermoelectric coolers, and pumped fluid loop

Passive thermal management

- Regulate temperatures without the use of powered equipment
- Advantage: Does not require fans or pumps, generally lighter and use less space, and maintenance costs
- Drawbacks: Limited control, slower response times, limited scalability and inefficient in extreme environments
- Examples: Paint and coatings, heat pipes, deployable radiator, and thermal storage units

Resonant induced thermal management

- Combination of passive and active thermal management
- No moving components but needs power supply for electrostatic forcing
- Use resonant induced flow to increase heat transfer from parametric forcing
- The internal fluids are interchangeable which allows for variability when optimizing this system for specific purposes

What Is Resonance?

<u>Resonance</u> occurs when the frequency of your forced oscillation matches the <u>natural frequency</u> of the system causing large deformation

Natural frequency (the oscillating or sloshing yellow colored water in a glass) – Nevin Brosius

(1,1)

Natural Frequency of Inviscid Fluid Layer

$$\omega_n^2 = rac{(\Delta
ho gk + \gamma k^3)}{
ho coth(kH)}$$

Δρ : Density difference between fluid and passive gas γ : Surface tension k : Wave number of pattern H : Height of the fluid layer ρ : Density of fluid

Faraday Instability

Resonance between natural frequency and induced external frequency

Batson et.al. The Faraday Threshold In Small Cylinders And The Sidewall Non-ideality, JFM

Mechanically Forced Heat Transfer

Electrostatic Faraday Instability

Natural Frequency

$$\omega_n^2 = rac{(\Delta
ho gk + \gamma k^3 - rac{\epsilon_2\epsilon_0 coth(kh_2)}{h_2^2}D^2k^2)}{
ho_2 coth(kh_2) +
ho_1 coth(kh_1)}$$

(3,2) mode (water and 1.5 cst Si-oil)

 $\begin{array}{l} \Delta \rho : \text{Density difference between fluid 1 and 2} \\ \gamma : \text{Surface tension} \\ \textbf{k} : \text{Wave number of pattern} \\ h_i : \text{Height of the fluid layer} \\ \rho_i : \text{Density of fluid} \\ \epsilon_2 : \text{Permittivity of fluid} \\ \epsilon_0 : \text{Permittivity of free space} \\ D: \text{Constant voltage} \end{array}$

Electrostatic Experimental Design

Electrostatic Experimental Design

Electrostatic Resonance Videos

(1,2) waveform at 3 Hz and 5.5 kVpp

(6,1) waveform at 7 Hz and 6 kVpp

Results

UF

Results

Experimental Issues

• Meniscus waves from wall effects caused by the small geometry of the cell

• Deviation from perfect conductor theory

- Larger cell to minimize the influence of meniscus waves
- Test different types of fluid
 - Liquid metals
 - Phase change fluids
 - Heat transfer fluids
- Create theory that couples electrostatic Faraday equations with energy equations

Conclusion

- Preliminary research shows that heat flux can be increased through resonance in a fluid system
 - Over 50% increase for some trials
- Data trends show that the lower frequencies have a higher percentage increase of heat flux than its higher counterparts
 - Possibly due to penetration depth of waves
- Changes need to be made to cell design to minimize variability

Questions?