TFAWS Passive Thermal Paper Session

TFAWS23-PT30

Copper/Water Heat Pipe Qualification Testing for Spaceflight Hardware

John Thayer Engineering Group Leader, Aavid Thermacore

Chris Gehrig Mechanical Engineer, SEAKR Engineering

John Thayer

Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

- Copper/Water heat pipes are widely used in the electronics cooling world.
 - By the tens of millions
- Can water heat pipes really survive freeze-thaw cycles?
- How is water heat pipe function effected by thermal cycling?
- How are these heat pipes tested?
 - Passive thermal cycles
 - Active thermal cycles
 - Heat input to the evaporator while the condenser cycles back and forth across 0C.

- Copper/Water heat pipe design characteristics
 - Phase change heat transfer
 - Wick porous structure rather than grooves
 - Working fluid is water, which has better properties than ammonia

- Copper/Water heat pipe design characteristics
 - Compliant wick
 - Sintered copper powder
 - ~50% porosity, like a metal sponge
 - Copper wire mesh

- Careful metering of the quantity of working fluid
 - All liquid should be contained in the wick
 - Avoid any pools of liquid spanning the space between the walls of the tube
- As the water freezes during passive, unheated conditions
 - The heat pipe is nearly isothermal
 - Granules of ice form, contained inside the wick
 - The wick flexes, accommodating the volume increase of the ice
 - Over 1,500 passive freeze/thaw cycles have been performed

Typical Applications

- Virtually every laptop uses copper/water heat pipes to cool the CPU/GPU
 - · Components are linked to air-cooled heat sinks
- Many applications attach high powered components to a cold rail
 - Most common space application
- Embedded in an aluminum structure to increase the conductance
 - Payload chassis
 - Link the cold rail to the thermal ground plane
 - Cold Plates
 - Large heat sinks
 - Heat sinks with a complex mechanical structure

- Copper/Water heat pipe design characteristics
 - Diameter 3mm to 8mm
 - Length 10cm to 30 cm
 - Heat Load
 5W to 25W
 - Heat Flux
 10W/cm² to 25W/cm²
- Evaporator and/or Condenser Blocks are often attached
 - Soldered or epoxied
- Bent and flattened to accommodate the design
 - Annealed copper is very soft
- Vapor Chambers
 - Same phase change heat transfer
 - 2D structure from welded copper plates
 - Sintered wick on one plate

- Copper/Water Heat Pipe Design Characteristics
 - "Chip Coolers"

Copper/Water Heat Pipe Design Characteristics

Copper/Water heat pipe fabrication process

- 1. Cut & clean copper tubing
- 2. Spin one end of tube into a hemisphere
 - 1. Braze the spun end
- 3. Powder fill the tube
 - 1. Center cylindrical mandrel to create hollow vapor space
 - 2. Vibration to settle powder
- 4. Sinter the powder in a high temperature furnace
- 5. Swage the open end to a smaller diameter
- 6. Evacuate air & add fluid charge
- 7. Burn-In & circulate
- 8. "Burp" NCG and excess fluid from the heat pipe
- 9. Pinch-seal and braze the open end
- 10. Bend and/or flatten the heat pipe
- 11. Attach evaporator and/or condenser blocks

- Copper/Water heat pipe Quality Assurance steps
 - 1. First Article Inspection / Material Certs
 - 2. Process controls
 - a. Cleaning
 - b. Sintering
 - c. Fluid charge
 - 3. Sintering inspection
 - a. After sintering
 - b. After freeze/thaw test
 - 4. Leak Check
 - 5. Go/NoGo Gauge
 - a. Bent heat pipes
 - b. Soldered assemblies
 - 6. Burn-In & NCG Test
 - 7. Thermal performance tests
 - a. Various heat loads, temperatures, orientations
 - 8. Passive Freeze/Thaw tests
 - a. Stand-alone heat pipes
 - b. Soldered assemblies
 - 9. Active freeze/thaw tests
 - a. Cold Start test
 - b. Powered Freeze/Thaw test

- Historical data for freeze-thaw tolerance has primarily been passive thermal cycles
 - Fluid is largely retained in the wick structure during passive thermal cycling
- Design, test and missions can significantly impact the fluid/ice distribution
 - System utilization may induce freeze-thaw cycles during test at cold dwells
 - On-orbit environments may drive freeze events for units with continuous operation
 - Powered events will drive non-uniform fluid/ice distribution along the length of the pipe
 - Vapor will condense and then freeze in place in the condenser in these conditions, leading to dry-out in the evaporator
- Several areas of interest influenced definitions of qualification test
 - Freeze/thaw tolerance for passive and actively powered freeze conditions
 - Restart capability during aforementioned freeze conditions
 - Impact to EOL performance TFAWS 2023 August 21-25, 2023

- Three tests developed to address the various cases
 - Standard passive freeze-thaw
 - Uniform freeze and thaw
 - Powered freeze-thaw (power applied continuously)
 - Non-uniform freeze and thaw
 - Cold start (power applied only during ramp from cold dwell through hot dwell)
 - Uniform freeze, non-uniform thaw
- Pre, mid, and post test performance verification
 - BOL performance
 - Mid cycle verification of appropriate restart
 - EOL Performance

Copper/Water heat pipe Acceptance Test Protocol

- 1. Thermal Performance
 - a. Performed at Acceptance Hot
 - b. 50% max load, max load
 - c. Adverse gravity & Gravity neutral
- 2. Passive Freeze/Thaw
 - a. Above and below 0C
 - b. Over 30 cycles
 - i. Gravity Aided
 - ii. Adverse Gravity
- 3. Powered Freeze/Thaw
 - a. Above and below 0C
 - b. Over 10 cycles, max heat load
 - i. Heat applied continuously
 - ii. Adverse gravity
- 4. Cold Start
 - a. Above and below 0C
 - b. Over 10 cycles, max heat load
 - i. Heat applied only during the up-ramp and hot dwell
 - ii. Adverse gravity
- 5. Thermal Performance Test
 - a. Performed at Acceptance Hot
 - b. 50% max load, max load, 125% max load
 - c. Adverse gravity & Gravity neutral

- Copper/Water heat pipe Qualification Test Protocol
 - 1. Thermal Performance
 - a. Performed at Acceptance Hot
 - b. 50% max load, max load
 - c. Adverse gravity & Gravity neutral
 - 2. Passive Freeze/Thaw
 - a. Above and below 0C (same as acceptance)
 - b. Over 120 cycles in various orientations
 - Gravity aided
 - ii. Adverse gravity
 - iii. Gravity neutral
 - 3. Powered Freeze/Thaw
 - a. Above and below 0C (same as acceptance)
 - b. Over 450 cycles in various orientations, max heat load
 - i. Heat applied continuously
 - ii. Adverse gravity
 - iii. Gravity neutral
 - 4. Cold Start
 - a. Above and below 0C (same as acceptance)
 - b. Over 30 cycles, max heat load
 - i. Heat applied only during the up-ramp and hot dwell
 - ii. Adverse gravity
 - 5. Thermal Performance Test
 - a. Performed at Acceptance Hot
 - b. 50% max load, max load, 125% max load
 - c. Adverse gravity & Gravity neutral

Cold Start and Powered Freeze/Thaw

Cold Start and Powered Freeze/Thaw

Conclusions from qualification test

- Restart demonstrated for subject designs with passive as well as actively powered conditions
- Freeze/thaw tolerance demonstrated for over 650 combined cycles
- EOL performance verified in adverse gravity and gravity neutral conditions
 - Demonstrated no detrimental degradation of wick structure

• What's going on inside a Copper/Water heat pipe during Freeze/Thaw?

- Approximate quantities of Copper/Water Heat Pipes and Vapor Chambers in space
 - Boyd US
 - Heat Pipes
 - >1000 in space
 - > 8 years heritage
 - Several major satellite vendors
 - NASA
 - » TESS
 - » SWOT
 - Vapor Chambers
 - >20 in space
 - ~2 years heritage
 - Satellite prime
 - Boyd UK
 - Heat Pipes
 - >3000 in space
 - > 8 years heritage
 - Chip Coolers & Chassis
 - Several European satellite primes plus some smaller vendors