

GSFC • 2023

Thermal Balance Testing and Model Validation of CubeSat STIM

Presented By Jesper Buch Jensen jeje@gomspace.com

Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

Introduction

A Thermal Balance Test (TBT) has been done on a Structural Thermal Interface Model (STIM) of the Juventas CubeSat

- Mission
 - Deep space 6U CubeSat
 - Going to Didymos with Hera
 - Stowed for 2-4 years, operational for 0.5 years
 - No heritage with TBT or deep space missions

• Test

- To validate Thermal Mathematical Model (TMM)
- Estimate errors (reduce uncertainties)
- Ensure the thermal control system is fit for purpose
- Potential mitigations for Proto Flight Model (PFM)

Test Facility

• TVAC chamber:

- -55 C to +100 C
- Not hot plate control
- Solar Panels must be stowed
- TVAC characterisation necessary
- Can connect 16 external thermocouples (TCs)
- 2 TCs for temperature control

Device Under Test (DUT)

• Structural Thermal Interface Model (STIM)

- Thermal mass dummies
 - Power dissipation using heaters
 - Interfaces are representative but not identical

• Instrumentation

- 2 chamber TCs (data not saved)
- 16 external TCs
- 4 internal IC sensors (TS100s) (data retrieved after test)
- 4 subsystem sensors (data retrieved after test)

Device Under Test (DUT)

- Payload instruments
 - JuRa: Radar
 - GRASS: Gravimeter
 - NavCam: Navigation Camera
- Thermal features
 - Thermal grease on interfaces for NavCam, JuRa and BP8
 - PEEK spacers on propulsion
 - Rubber seal on propulsion

Test Sequence

- The test was run as a combined Thermal Cycling Test (TCT) and TBT
- Two TBTs were run at different temperatures near the end of the combined sequence

Temperature controlled on shroud:

- Hot TBT shroud setpoint: +10 C
- Cold TBT shroud setpoint: -10 C

"Hot" and "cold" refer to the shroud temperature setpoint. Due to the higher power dissipation in the "cold" TBT, some temperatures are higher (e.g. for the propulsion).

Consumer/heater	Power dissipation [W]
P80 PMU	0.14
P80 PDU	0.49
OBC	4.46
NavCam	2.72
Reaction Wheels	3.24
Total	11.04

Consumer/heater	Power dissipation [W]
P80 PMU	0.15
P80 PDU	0.49
OBC	4.44
Propulsion Distr 1	4.82
NavCam	2.72
JuRa dummy	6.09
Propulsion main	2.35
Reaction Wheels	3.24
Total	24.28

Thermal Mathematical Model (TMM)

- A TMM was made specifically for the test
- Based on the mission TMM but with the following differences:
 - Shroud instead of space
 - No sun (chamber too small)
 - Dummies instead of actual subsystems where applicable
 - Different tape configuration on cover plates (SSMT)
- FEM with simplified but fairly complex geometry (~130000 elements)

EN AW 5005-H14 Preanodised EN AW 6082-T651 Clear ano. EN AW 7075-T7351 Black ano. EN AW 7075-T7351 Chr. TCP Stainless steel 304L untreated* EN AW-6082 T651 untreated* Other surfaces* CFRP Solar panels FSM

- Conductance values are generally based on internal standard assumptions, combined with estimation
- The JuRa (internal) and rubber seal values are adjusted (fudged) to match data (no initial assumptions were available)

nterfaces	Conductance	Notes
	W/K/m ²	
Cover plates (x)	1000	
Cover plates (y)	263	Calculated from no of screws
Cover plates (z)	1000	
Masses	5000	
SADA (cover plate)	0	No contact
SADA (structure)	5000	
uRa (structure)	12000	Thermal grease
uRa (internal)	500	Estimated from test data
3P8	12000	Thermal grease
280	8000	
Propulsion PEEK spacers	1000	
Prop rubber seal	500	Estimated from test data
Prop other internal	5000	
DBC	10000	
SL	10000	
Reaction wheels (structure)	1000	
Reaction wheels (internal)	1000	
GRASS	5000	
ЛТ	12000	Thermal grease
Startracker bracket	5000	
Propulsion PCB	5000	

Cold TBT

ASA

Internal

φ

Φ

RW Bracket

O

Ċ

0

₫

P80 PDU

BP8 FM

P80 PMU

OBC

φ

rth.

φ

由

Cold TBT

Cold TBT

Cold TBT

ASA

ASA

15

Results

Hot TBT

	Sensor	Test	тмм	Diff
	External x	30.1	32.1	-2.0
	External -y	14.5	12.2	2.3
es	External -x	33.9	30.0	3.9
ldr	JuRa Electronics Box	31.1	27.7	3.4
õ	JuRa Electronics Box Rail	33.2	28.2	5.0
Ê	NavCam interface	46.5	37.4	9.1
Jer	Propulsion PEEK interface	33.5	28.9	4.6
	Prop Peak I/F Prim Struct	33.2	28.7	4.5
	Propulsion PCB Bracket	35.2	30.8	4.4
	BP8	31.2	28.0	3.2
6	Propulsion End Cap	33.6	29.0	4.6
Ő	NavCam	46.8	37.6	9.2
TS1	GRASS	35.3	30.8	4.5
	RW Bracket	50.3	51.3	-1.0
nternal	P80 PMU	38.2	29.6	8.6
	P80 PDU	39.2	29.6	9.6
	BP8 FM	31.5	28.0	3.5
=	OBC	60.5	47.9	12.6

	Sensor	Test	тмм	Diff
Thermocouples	External x	36.4	41.9	-5.5
	External -y	1.0	0.1	0.9
	External -x	37.8	39.6	-1.8
	JuRa Electronics Box	43.1	41.9	1.2
	JuRa Electronics Box Rail	43.4	41.5	1.9
	NavCam interface	51.3	47.5	3.8
	Propulsion PEEK interface	57.4	55.9	1.5
	Prop Peak I/F Prim Struct	44.9	42.1	2.8
	Propulsion PCB Bracket	41.7	41.1	0.6
	BP8	40.1	39.7	0.4
TS100s	Propulsion End Cap	77.5	73.8	3.7
	NavCam	52.8	47.5	5.3
	GRASS	41.7	40.8	0.9
	RW Bracket	57.7	61.2	-3.5
Internal	P80 PMU	48.6	42.4	6.2
	P80 PDU	48.7	42.4	6.3
	BP8 FM	43.5	39.7	3.8
	OBC	71.0	58.5	12.5

Cold TBT

Modifications made to TMM after test:

- Implementation errors
- Conductance between ±y cover plates and structures
- Inclusion of rails in external radiation (~12 % of \dot{q})
- Propulsion rubber seal modelled in more detail
- (Minor) adjustment of FSMT surface assumption
- (Internal radiation must include all surfaces)

NAS

- Yes:
 - ✓ Conductive heat paths
 - ✓ Interface conductances
 - ✓ External radiation boundaries (IR)
 - ✓ Conductivities

- Yes:
 - ✓ Conductive heat paths
 - ✓ Interface conductances
 - ✓ External radiation boundaries (IR)
 - ✓ Conductivities
- Maybe:
 - ? Power supply dissipation
 - ? Internal radiation
 - ? Degree of steady state achieved in test

- Yes:
 - ✓ Conductive heat paths
 - ✓ Interface conductances
 - ✓ External radiation boundaries (IR)
 - ✓ Conductivities
- Maybe:
 - ? Power supply dissipation
 - ? Internal radiation
 - ? Degree of steady state achieved in test
- No:
 - Wavelength-dependent optical properties (SSMT)
 - External radiation boundaries (solar radiation)
 - × Solar panel operation
 - **×** Battery operation
 - Solution And Shading effects
 - Transient thermal behaviour (heat capacities)

NASA

- Planned validations successful
- Thermal grease works
- PEEK spacers work
- Can ignore:
 - Harness
 - Solar panel conductive links
 - Non-essential conductances (for steady state)
- Internal subsystem temperature resolution not sufficient to compare with measurements
- Accurate conductance estimates should be calculated for interfaces with large areas
- Local variations in conductance to cover plates can be significant

Backup slides

- Steady state criteria should be <0.5 C/4h (instead of <0.5 C/1h for 2 hrs)
- Make a TMM before test:
 - Plan power profiles
 - Make test procedure
 - Predict internal sensor measurements
- Stick to the plan: minimise revisions of test procedure after test has begun
- Minimise manual interaction during test
- Large interfaces need careful estimation of conductance, may need to be split into regions
- Internal radiation needs to be calculated for all internal surfaces
- Start TBT from cold and let it settle (should give a transient profile)

Error Estimates

Overall error estimates

	Location	Negative °C	Positive °C
Thermocouples	External x	-5.5	0
	External -y	0	2.3
	External -x	-1.8	3.9
	JuRa Electronics Box	0	3.4
	JuRa Electronics Box Rail	0	5.0
	NavCam interface	0	9.1
	Propulsion PEEK interface	0	4.6
	Prop Peak I/F Prim Struct	0	4.5
	Propulsion PCB Bracket	0	4.4
	BP8	0	3.2
FS100s	Propulsion End Cap	0	4.6
	NavCam	0	9.2
	GRASS	0	4.5
	RW Bracket	-3.5	0

Observations:

- NavCam errors possibly due to local conductance variations
- External x: max error -5.5 C, ECSS recommendations are less than:
 - \pm 10 C externally
 - \pm 5 C internally

NASA

- A simple sensitivity check was made for:
 - Emissivity of each external surface material (7 × 2 runs)
 - Conductivity of: each type of Aluminium, PEEK, silicone rubber, stainless steel, solar panels (7 × 2 runs)
 - Conductance of all interfaces in the following groups: Each power dissipating subsystem, cover plates: each of $\pm x$, $\pm y$ and $\pm z$, all masses, all ignored interfaces (18 × 2 runs)
 - Internal radiation (on/off)
- Observations:
 - External emissivities most significant
 - Conductance and PEEK spacers have significant effect on the propulsion system
 - Reaction wheel conductance fairly sensitive
 - Conductivity only significant for propulsion and to a lesser degree reaction wheels (due to long heat paths)
 - Internal radiation: \pm ~1 C. If not using all surfaces, up to: \pm ~10 C