TFAWS Passive Thermal Paper Session

3D Printed Wick Development for Loop Heat Pipes Rohit Gupta, Chien-Hua Chen, William G. Anderson Advanced Cooling Technologies, Inc.

> Presented By Rohit Gupta

Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

ANALYSIS WORKSHOP

TFAWS

GSFC • 2023

&

HERNAL RANA

Introduction

20009

- Conventional LHPs have high costs and long lead times due to laborintensive evaporator fabrication
- ACT has fully-automated evaporator fabrication using Laser Powder Bed Fusion (LPBF)
- Significant savings in cost and lead times; a low-cost, flexible thermal link for SmallSats

	Standard LHP	3DP LHP
New Design		
(EDU, Qual, etc.)	\$200k-\$500k	\$100-\$200k
Development Time	12+ months	6+ months
Recurring		
(Acceptance Testing only)	~\$100k	~\$40k
Recurring Lead Time	8+ months	4+ months

ROM for comparison purposes, assuming similar testing requirements

- Previous presentation (Gupta et al., 2021) provided an overview of the 3D printed evaporator development
- Current presentation focuses on the details of the wick development

- Wick Build
- Wick Characterization
 - Methods
 - Results
 - Pressure Margin
 - Loose Powder Ejection
- Conclusions
- Current Work

Wick Build

- A standard wick sample geometry selected for parameter development
 - Design includes a solid wall to incorporate the bi-porous transition
 - Wick region offset from the build plate to avoid EDM cut

 All wick samples built with recycled 15-50 µm 316L SS powder

 Porosity introduced through controlled lack-of-fusion by varying an "energy density" in LPBF P = laser power t = exposure time h = hatch distance d = point distance l = layer thickness

- Energy density increased in steps; each wick characterized by three parameters:
 - Max. eq. pore radius (r_{eq})
 - Permeability (k)
 - Connected porosity
- Experimental methods:
 - Bubble-point test $\rightarrow r_{eq}$
 - Dry flow test $\rightarrow k$
 - Mercury Intrusion Porosimetry \rightarrow connected porosity

During flow test, sample was not submerged in IPA bath

- Energy density below 0.67 J/mm³ found to lead to complete build failure
- Loose powder ejected during ultrasonic cleaning between 0.67 J/mm³ and 1.09 J/mm³
- Complete build success at 1.09 J/mm³ and beyond, with increasingly dense samples

Energy density, <i>E_p</i> (J/mm ³)	Max. eq. radius, r _{eq} (µm)	Permeability, k (10 ⁻¹⁴ m ²)	Connected porosity (%)
5.08	1.8 ± 0.5	0.34 ± 0.03	8.56
3.57	3.03 ± 0.04	1.53 ± 0.06	9.68
2.22	4.1 ± 0.1	2.7 ± 0.2	27.02
1.09	5.9 ± 0.2	49 ± 5	43.97
0.90	Loose powder ejection		
0.83	Loose powder ejection		
< 0.67	Build failed		

- Wicks with max. pore radius of ~2 µm successfully developed in this program
- 3D printed wick permeability generally trends lower than conventional wicks
- Build direction has no significant effect on the capillary properties;
 i.e., wicks are isotropic

Build

direction

- Appropriate wick choice will depend on pressure margin; Pressure margin = Wick capillary pressure – Wick pressure drop
- Pressure margin depends upon max. pore radius, permeability, wick size, nominal heat load, etc.
- For similar pressure margin, a high porosity wick will have lower heat leak, better thermal conductance

- Wick samples between 0.67 J/mm³ and 1.09 J/mm³ seen to eject loose powder
- With mixed 15-50 µm powder, large particles can potentially "shadow" smaller particles
- At low E_ρ, smaller particles may not fuse → ejected through gaps between larger particles
- Avoided with uniform powder

Uniform powder

- 3D printed wicks with controlled porosity printed by modulating the energy density in LPBF
- Wick builds successful above a threshold energy density
- Overall, max. pore radius of 2 6 µm, permeability of 10⁻¹⁵ to 10⁻¹² m², and porosity of 9% to 44%
- Appropriate wick choice depends on pressure margin; higher porosity wick preferred for similar pressure margins
- Current work to serve as guideline for 3D printed wick development

Current Work

- New evaporator design and testing for improved conductance
 - Improved vapor groove geometry
 - Circumferential vapor channels
 - Thinner wall (subject to structural constraints)
 - Larger gap to CC

Current Work

- Mini LHP development for CubeSats (1.5-inch evaporator)
 - under NASA Phase II SBIR

- Larger system (4-inch evaporator) with integrated DRP under development for ESPA-Sat
 - under USAF Direct to Phase II SBIR
- Pursuing opportunities for sustained microgravity testing

