TFAWS Passive Thermal Paper Session

GSFC • 2023

Advances in Thermal Technologies Using Pyrolytic Graphite Sheet

Matt Ralphs, Matt Sinfield, Holly Mortensen, Matt Felt Space Dynamics Laboratory, North Logan, Utah

> Presented By Matt Ralphs (matt.ralphs@sdl.usu.edu)

Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

- 1. Introduction to PGS
- 2. PGS Thermal Straps
- 3. PGS-Embedded Conductor Bars
- 4. PGS-Embedded Cryocooler Brackets

Honeycomb radiator with embedded PGS conductor bar

5a

5. PGS-Embedded Radiators

5b

- a) Solid metallic
- b) Honeycomb
- 6. Conclusions

TFAWS 2023 - August 21-25, 2023

• PGS: Pyrolytic Graphite Sheet

- "Created from a high temperature sintering process, heating a polymer film to its decomposition temperature in a vacuum and allowing it to carbonize then graphitize until ultimately left with a highly oriented graphite material." (https://hpmsgraphite.com/pyrolyticgraphitesheet)
- Highly aligned graphite layers provide exceptionally high in-plane thermal conductivity

Property	Direction	Value at R.T.
Thermal Conductivity	XY	1500 Wm ⁻¹ K ⁻¹
	Z	17 Wm ⁻¹ K ⁻¹
Expansion Coefficient	XY	9.3 × 10 ⁻⁷ K ⁻¹
	Z	3.2 × 10 ⁻⁵ K ⁻¹
Specific Heat	-	0.85 Jg ⁻¹ K ⁻¹
Density	-	1.92 g/cm ³

Exceptional thermal conductivity to density ratio (10 × that of aluminum 1100!) makes it ideal for passive thermal control in space

2500

NASA

- Properties dependent on sheet thickness
- Conductivity peaks around 160 K
- Durable (see airplanes on previous slide)
 - Manufacturer fatigue life = +20,000 cycles
 - Thermal strap cycled to nearly 300,000 cycles to deflections expected in space flight applications

Application temperature and sheet thickness are critical when designing with PGS

PGS Thermal Straps

1. Introduction to PGS

2. PGS Thermal Straps

- 3. PGS-Embedded Conductor Bars
- 4. PGS-Embedded Cryocooler Brackets
- 5. PGS-Embedded Radiators
 - Solid metallic a)
 - b) Honeycomb
- 6. Conclusions

PGS Thermal Straps

- SDL has been making thermal straps for space flight since the early 1990s
- SDL PGS thermal straps are TRL-9
 - TRL-6 in 2020 and over 150 custom designed space-bound PGS thermal straps have been delivered to date
- Majority of thermal straps that SDL delivers are now PGS
- Same proprietary swaging process means no adhesives, glues, or solder
 - Less contamination risk and higher thermal performance
- PGS thermal straps are superior to metallics in:
 - Thermal conductivity (temperature dependent)
 - Density
 - Flexibility
 - Vibration isolation

SDL PGS thermal straps result in less mass and higher thermal performance than metallic straps for applications above 80 K

PGS Thermal Straps

- High thermal conductivity + low density = superior massspecific conductance
- Three times more flexible than aluminum foil strap of the same geometry
- Relatively short PGS strap (~2" of exposed PGS) reduced a random vibe input of 48 GRMS on one end to less than 1 GRMS on the other end
- For more information on PGS straps compared to metallics:
 - M Ralphs, M Sinfield, M Felt. "High performance thermal straps for a full range of application temperatures." 21st Int. Cryocooler Conf, 2020

More flexible, more conductive, and better at isolating from vibration then metallic foil straps

- 1. Introduction to PGS

3. PGS-Embedded Conductor Bars

- 4. PGS-Embedded Cryocooler Brackets
- 5. PGS-Embedded Radiators
 - Solid metallic a)
 - b) Honeycomb
- 6. Conclusions

- Conductor bars are used when heat needs to be conducted from point A to point B and the compliance of a thermal strap is not needed
- PGS-embedded conductor bars combine the strength of the housing material with the high thermal performance of PGS
- Housings have been made and tested using AI 1100-H112, AI 6061-T4, and 6063-T5
- Custom interfaces are added along the length to accommodate multiple connections, conducting heat to the cold sink from multiple components
- SDL PGS conductor bars are TRL-8

Combine strength of housing material with high conductivity of PGS for superior mass-specific conductance

PGS Embedded Conductor Bars

- Thermal straps commonly attach to the end of conductor bars to provide necessary compliance where needed in the system, adding an additional thermal joint
- PGS conductor bars and straps can be integrated into a single component to eliminate thermal joint and further improve performance

Combine bar and strap for even higher thermal performance and mass savings

- 1. Introduction to PGS
- 2. PGS Thermal Straps
- 3. PGS-Embedded Conductor Bars

4. PGS-Embedded Cryocooler Brackets

- 5. PGS-Embedded Radiators
 - a) Solid metallic
 - b) Honeycomb
- 6. Conclusions

TFAWS 2023 - August 21-25, 2023

Δ

PGS-Embedded Cryocooler Brackets

- High power cryocoolers limited by how much waste heat can be disposed
- PGS-embedded cryocooler brackets provide 2-3x boost in conductance, enabling the use of more cooling capacity
- More than 17 W/K from cryocooler to cold plate (sink)
 - 23 K dT with 380 W load

2-3x thermal performance enables higher power cryocoolers and more cooling

- 1. Introduction to PGS
- 2. PGS Thermal Straps
- 3. PGS-Embedded Conductor Bars

4. PGS-Embedded Cryocooler Brackets

5. PGS-Embedded Radiators

- a) Solid metallic
- b) Honeycomb
- 6. Conclusions

- Radiator efficiency is often limited by how well the heat can be spread
- Adding heat spreaders to a radiator is common to boost efficiency
- PGS-embedded radiators spread heat better than traditional methods
- Multiple thermal interfaces can be machined into spreader to accommodate multiple sources of heat to a single radiator

PGS boosts radiator efficiency, reducing mass and volume

PGS-Embedded Radiators

- PGS-embedded conductor bars are embedded in honeycomb radiators, similar to traditional spreaders
- TRL-6

Smaller face sheet gradient = more heat dissipated to space

- Comparison of honeycomb radiator efficiencies
 - Comparing heat rejected to space against an ideal radiator (uniform temperature)

- 1. Introduction to PGS
- ✓ 2. PGS Thermal Straps
- 3. PGS-Embedded Conductor Bars
- 5. PGS-Embedded Radiators \checkmark

5b

- Solid metallic a)
- Honeycomb b)
- 6. Conclusions

Intro to PGS

- 1. PGS has an exceptionally high conductivity-to-mass ratio
- 2. PGS straps, conductor bars, cryocooler brackets, and radiators all outperform their traditional passive thermal counterparts
- 3. PGS-embedded components save mass and enable higher power components

QUESTIONS?