TFAWS Passive Thermal Paper Session

Design and Testing of Thermal Ground Support Equipment for Calibration of HARP2

Danny Nelson, UMBC

Presented By Danny Nelson

Thermal & Fluids Analysis Workshop TFAWS 2023 August 21-25, 2023 NASA Goddard Space Flight Center Greenbelt, MD

- Intro to HARP2
 - Overview
 - Thermal design
- HARP2 Ground Calibration Campaign
 - Requirements
- Ground Cal Thermal GSE Design
- Ground Cal Thermal GSE Performance
- Conclusions and Lessons Learned

HARP2 Overview

 Hyper-Angular Rainbow Polarimeter 2 (HARP2) is a wide-field of view imaging polarimeter contributed to NASA's PACE mission by the University of Maryland, Baltimore County (UMBC)

HARP2 Overview

HARP2 Overview

- HARP2 calibration needed to characterize
 - spectral response from 370nm to 900nm
 - radiometric response
 - polarimetric response
 - response over entire FoV
 - response at flight temperatures

- Dark current is inherent noise in a detector that must be subtracted off
- Dark current is directly proportional to the temperature of the sensor
- To mitigate noise, HARP2 was designed to operate with a nominal on-orbit science CCD temperature of -13C

- HARP2's three detectors are cold biased using the primary radiator
- Trim heaters are used to stabilize the detectors within ± 0.5 C during acquisition

• The passive cooling scheme of HARP2 presented a challenge during ground calibration, which took place in ambient air in GSFC Bldg 33

Calibration GSE Design

- GSE needed to meet following requirements:
 - ✓ Actively cool three CCDs to flight temperature of -13C

Prevent vapor in the air from condensing on instrument

- ✓ Allow for movement of the instrument, which is mounted on a pitch/yaw rotating stage
- ✓ Allow for installation without disassembly / config change of the instrument

- GSE needed to meet following requirements:
 - ✓ Actively cool three CCDs to flight temperature of -13C

Solution: Actively cool the radiator at an accessible place using a Peltier-cooled cold plate sunk to a refrigeration loop

Prevent vapor in the air from condensing on instrument

Solution: bag the radiator with an insulative tent and purge both the instrument and the tent with nitrogen

✓ Allow for movement of the instrument, which is mounted on a pitch/yaw rotating stage Solution: connect the refrigeration lines to the cold plate using flexible, insulated tubing

Allow for installation without disassembly / config change of the instrument
 Solution: design radiator interface plate that can slide under the radiator and then be jacked into place

Thermal GSE Design

NASA

Thermal GSE Design

Thermal GSE Performance

Thermal GSE Performance

HARP2 Thermal Design

- While the TGSE succeeded in allowing for range of motion, serviceability, and condensation mitigation, it did not meet temperature performance
- The CCDs reached a minimum temperature of 7C

Conclusions

- Unable to calibrate at flight temperature
- Post calibrated during PACE
 Observatory TVAC
- Temperature dependent behavior obtained during obs TVAC will be applied to the calibration coefficients to produce high-quality on-orbit science

- Wherever possible, design passively-cooled instrument calibrations in vacuum environment
- Design flight components with GSE in mind

• Questions?

NASA