National Aeronautics & Space Administration (NASA)/Goddard Space Flight Center (GSFC)

TFAWS 2023 JWST Thermal (There and Back Again)

Shaun Thomson / GSFC 8/22/2023

Unique Project Features

- NASA Class A Flagship mission
 - 4th for Astrophysics Division
- Long development cycle 25 year (approval-to-flight)
- Large expenditure \$8.8 billion for development
- Large & International Team
 - 3 Space Agencies (NASA, ESA, CSA)
 - 14 countries
 - 258 companies and universities
 - Northrup Grumman Prime Contractor
- Only 3rd NASA mission to L2 (1.5 million km)
- Extensive oversight Congress, GAO, IR committees
 - 1 descope
 - 2 cancellation threats
- Extensive media presence & public interest

Organization & Responsibilities

- Mission Lead: Goddard Space Flight Center
 - Mission Systems Engineering GSFC
- International collaboration: ESA & CSA
- Prime Contractor: Northrop Grumman Aerospace Systems (Space Park, LA, CA)
 - OTE Structure
 - Sunshield element
 - Spacecraft Bus (& prop, commo, ACS, C&DH, PCS)
 - Deployments
 - OTE optics, ISIM radiators Ball Aerospace
- Instruments:
- Near Infrared Camera (NIRCam) Univ. of Arizona
- Near Infrared Spectrograph (NIRSpec) ESA
- Mid-Infrared Instrument (MIRI) JPL/ESA
- Fine Guidance Sensor (FGS) & Near IR Imaging Slitless Spectrometer CSA
- Cryocooler JPL & GSFC
- ISIM Structure, heat straps, IEC GSFC
- Launch Vehicle: ESA & Arianespace
- Launch & Commissioning: All Teams. STSci with GSFC lead.
 - Science & Operations Center (S&OC) JWST Mission Operations (MOC) Center Baltimore, MD
- Post-commissioning Operations: Space Telescope Science Institute

Challenging Thermal Subsystem

- Passive cryogenic cooling at an extremely large scale required for success
 - Active cooling to 6K for one instrument using new cryocooler design
- Controlling parasitic heat paths critical to achieving performance
 - Many very small and with complex paths (Radiative and Conductive)
- No test-as-you-fly at the Observatory level
 - [Deployed Sunshield + Optical Telescope + Instruments + SC bus] sees vacuum for the first time at flight
 - Thermal modeling intensive. Overall Observatory performance reliant on uncorrelated system-level models.
 - Two independent thermal models developed as part of risk reduction plan
- <u>344 Single points-of-failure</u> (launch locks, release devices, etc)
 - More than half associated directly with thermal success
- 1621 Thermal Requirements; 93 Operational limits/constraints
- Large number of long duration & complex cryogenic TVAC tests
- Complex 28-step deployment sequence with choreography of heater use
- Ariane 5 ECA launch vehicle unique to NASA missions
- 6-month cooldown & commissioning plan with thermal supporting activities throughout

- Began working on project in Aug 2001
- More than half my career
- 4x 30-day "TDYs" (TVAC tests & Flight Ops)
- More than half-million travel miles

Observatory Design Summary

Thermal Hardware (1 of 2)

Conductive Black Kapton XC used throughout OTE as outer layer of MLI or as film to control stray light

Thermal Hardware (2 of 2)

Example of Complicated Thermal Problem – ISIM Equipment Compartment (IEC)

- Where is the Best place to put a hot, high-powered component? On the Cryo-side...Obviously!
- *Requirement:* Instrument electronics required to be within 1.5 meters of instruments, to maintain signal integrity
- Boxes are warm (280K) sources, dissipating a sizable 200W. So, both a conducted and radiative heat source.
- Additionally, boxes needed to be vented which represents a significant long-term ice & contamination threat
- Thermal solution required a multi-prong effort utilizing all "tricks of the trade"

IEC "Kitchen Sink" Solution

- Radiator panel with supported electronics boxes
- Radiators conductively isolated from enclosure
- Low conductivity enclosure
- High efficiency MLI built with offset seams on mandrel
- Enclosure suspended from OTE with low-conductivity T300 flexures once 3 LRMs are released

 - 4-Stage Harness Radiator
 - Low conductivity harnessing 38ga Stainless Steel signal wires 32ga Phosphor Bronze power wires

Dual Nested Specular shields

Directional Baffles based on Compound Parabolic Concentrators control Radiant Emission

Multi-bounce passively cooled vent traps water while allowing depressurization of electronics compartment

Thermal Analysis

- Significant analysis effort was required in order to generate and validate thermal design & mission operations
 - Launch & Ascent phase. When in stowed configuration, cryogenic-optimized regions are very sensitive to solar exposure. Required clocking and roll profile development
 - Many deployment configurations. Most involved thermal preconditioning (ex. Motor and hinge heating)
 - Cooldown (180 days). Develop a thermal timeline as many activities required to negotiate 97 Limits & Constraints
 - Commissioning. Achieving final science thermal state.
 - Thermal Vac testing. GSE was often as thermally complicated as the test article.
- For the cryogenic regions, models required a lot of detail in order to ensure no heat paths were missed.
 Even a "negligible" path can be significant in a cryo environment where sizable temp, stray light, and stability impacts are measured in milliwatts.
 - Non-grey effects have impacts
 - Large number of ray casts; low extinction.
- Even for the room-temperature spacecraft bus, attention to detail was important. Bus runs hot when Observatory deployed.
 - One hemisphere is a view to a hot Layer 1 sunshield layer (~400K, e=0.75)
 - Solar energy is reflected off Layer 1 onto the bus (50% solar reflectance)

Thermal Models

- JWST/Thermal employed two independent thermal models for nearly all major efforts. One managed by NGAS, GSFC the other.
 - Little historical experience with such a large and passive cryogenic spacecraft. Failed performance was identified as a Project high-Risk
 - Increases confidence in model results. Greatly lowers risk of a "gotcha".
 - No thermal-vacuum test of entire Observatory. Either stowed or deployed. A large amount of design verification cannot progress beyond "analysis only".
 - <u>Represented a major component of the thermal verification process.</u>

	NGAS	GSFC
Geometry	TSS	NX-IDEAS
Solver	SINDA-G	TMG
Nodes	312,000	901,900
Couplings	25,600,000	130,000,000*

Solution times vary depending on case type:

4 hours for SS rerun to 2 weeks for 180d commissioning transient run

So....How did we do?

			GIVEN THAT 1.) material and coating properties have higher uncertainty and variability at temperature than margined and/or 2) MLI performance and
Drojoct			variability at temperature exceeds margins and/or 3) sunshield shape and irregularities at temperature exceed margins and/or 4) cable harness bundles,
FIUJELL	520	Cryo Temperature	shape, and properties uncertainty at temperature exceed margins and/or 5) deployment particulate or ice contamination from I&T, launch vibration
Risk	550	Performance	shedding, esp. on sunshield exceed margins and/or 6) IEC back loading on ISIM via the sunshield is higher than predicted
			THERE IS THE POSSIBILITY THAT the observatory is unable to achieve OTE & ISIM temperature requirements
			WITH THE RESULT THAT the science performance will be degraded

Launch – 25 December 2021 12:20 UTC (0720 EST)

Deployments

- Overall, deployments and early operations (first 2 weeks) went extremely smooth.
- Issues/Anomalies involving Thermal Team:
 - Following Sunshield Mid Boom deployment, Forward and Aft sunshield deployment hardware used for tensioning was projected to exceed pre-launch predictions. This was a concern because the tensioning motors will increase in temperature by 15-20K during operation. This could threaten Operational limits.
 - Thermal team identified a better Sun-Pitch orientation for tensioning. Reducing temperature by ~10K
 - Deployment team and Motor manufacturer reviewed testing and heritage and determined that Op limit could be raised by 10K.
 - Combination of these two paths returned margin to permit continuing safely with sunshield tensioning.

JWST Flight Cooldown - Actual vs Pre Launch Predictions

Most differences occurred prior to sunshield deployment and converged with predictions afterwards. Conservatism was much larger early as high temperatures were concern

- 1. Secondary Mirror Assembly cooled faster and approx. 5K lower at SS
- 2. MSE opted for a step-down plan not in pre-launch baseline
- 3. NS FPA heater released earlier at higher temp. 5d early
- 4. Conductance of heat strap connecting FSM to AOS radiator proved to be less than predicted

Actual cooldown time only 1.8 days longer than predicted (122d vs 120d)

Sensors vs Predictions at SS: 85% within 2K 96% within 5K

Final Instrument Temperatures & Margins

• Final instrument trim heater settings matched prediction

Instrument Interface	Flight (K)	Target (K)	Trim Settings
NIRSpec OA	35.57	35.5	10
NIRSpec FPA	42.80	42.8	8 (trim), 30 (CCH)
FGS	38.48	38.5	4
NIRCam	38.52	38.5	14

MIRI mounting feet 35.48K vs < 40K target

- Measured parasitic heat loads on the cryocooler are close to predictions at end of Commissioning
 - 118.6 mW (Flight) vs 117.6mW (predicted)

This confirms that the Observatory is demonstrating margins to parasitics very similar to predictions (>75% against future growth)

"Celebrity" – Project members get 15 minutes of Fame

Thermal?...well...15-milliseconds of Fame

NASA TV deployment coverage

NOVA "Ultimate Space Telescope: Making the James Webb Space Telescope"

Handoff after 180-day Cooldown & Commissioning Campaign

• Commissioning ended 10 July 2022 with official handover to STScI FOT personnel.

• Tale of the Tape:

- Thermal team participated 24/7 in monitoring JWST from the MOC for 83 days (12hr/shift). Then another 52 days at 8hr/shift for first and second shift. Then on-call/remote.
 - Total of 532 personnel shifts completed (> 2800 person-hours)
 - Personal: 19 COVID-19 rapid antigen tests taken

• Status at handoff:

- All 150 Heaters circuits nominal on A-side (redundancy preserved)
- 1 failed sensor (out of 1048). Used for hinge temperature.
 - Failed after deployments during cooldown.
- No Red alarms for violation of limits throughout 180 days
- No violations of the 93 Limits & Constraints during cooldown
- Cooldown required only 2 days more than predicted (120 days predicted)
- 3 Mission-level Anomalies encountered. 2 resolved (SCAT Valves on Pad, MTS motor). 1 minor and tracking (Catbed temp sensor)

1-year Later

- Long term trending continues
- Temperatures remain very stable

365

Temperature (K) 322 320 320

345 -

- Duty cycles are unchanged
- All heaters remain on A-side
- No loss of sensors

Thanks to Everyone over the years for making this Successful

l	Shaun	Thomson**	GSFC	Pei
	Paul	Cleveland	GSFC	Jos
	Brian	Comber	GSFC	An
	Christine	Cottingham	GSFC	Kat
	Angel	Davis	GSFC	Bill
j	Amy	Delisa	GSFC	Do
	Matt	Garrison	GSFC	Cat
1	Stuart	Glazer	GSFC	Joł
	Chris	May	GSFC	Ge
ð	Dan	Nguyen	GSFC	Sta
1	Tak	Or	GSFC	Pet
	Wes	Ousley	GSFC	Joh
ļ	Keith	Parrish	GSFC	Jan
	Jignasha	Patel	GSFC	
	Hume	Peabody	GSFC	Par
	Jeremy	Samuels	GSFC	Bei
1	Chad	Sheng	GSFC	Rai
1	Jim	Tuttle	GSFC	Ru
1	Kan	Yang	GSFC	De
	Michelle	Elie	STSCI	Sar
	Bill	Bast	STSCI	

Perry	Knollenberg*	NGSS
Josh	Adamson	NGSS
Andre	Aroyan	NGSS
Katherine	Booth	NGSS
Bill	Burt	NGSS
Dorothy	Foreman	NGSS
Catherine	Gaydosh	NGSS
John	Guildalian	NGSS
George	Harpole	NGSS
Stanley	James	NGSS
Peter	Munther	NGSS
John	Pohner	NGSS
James	Stanley	NGSS
Pam	Brinckerhoff	Ball
Ben	Drillick	Ball
Randy	Franck	Ball
Rusty	Sweigart	Ball
Dennis	Teusch	Ball
Sang	Park	Smithsonian
-		

Additionally,

Our partner thermal engineers for instruments and launch vehicle

- Marc Maschmann (Airbus)
- Bryan Shaughnessy (STFC UKRI)
- Liz Osborne (LMCO)
- Dave Aldridge (Honeywell)
- Arianespace Thermal team

The numerous people who helped staff (very long) TVAC tests:

- ISIM CV Tests
- OTIS CryoVac Test
- SCE Thermal Vac Test

And extra NGSS members who filled in so the MOC team would not be stretched too thin.

In Conclusion. Leave you with some of JWST's Observations

...and some apparently not getting much attention

It's All A Simulation! Webb Telescope SHOCKS The Entire Space Industry! 12K views • 1 month ago

The James Webb telescope has made an astonishing revelation that suggests a mind-boggling possibility: we might all be ...

James Webb Telescope Just Detected Alien-Like Structure In Space! 47K views • 3 weeks ago

🕚 Voyager 🥥

The James Webb space telescope has made headlines across the world because it is capturing some of the most exquisitely ...

James Webb Telescope Just Detected 755 Unidentified Objects Arriving From Another Solar System 33K views • 1 day ago

K Future Space

James Webb Just Detected A Huge Structure Older Than The Universe! 235K views + 1 month ago

EYES 200M

Welcome to EYES 200M, where we explore the fascinating world of science, technology, and the universe! From the inner ...